dblp.uni-trier.dewww.uni-trier.de

Andrew Y. Ng

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2008
91 Benjamin Sapp, Ashutosh Saxena, Andrew Y. Ng: A Fast Data Collection and Augmentation Procedure for Object Recognition. AAAI 2008: 1402-1408
90 Ashutosh Saxena, Lawson L. S. Wong, Andrew Y. Ng: Learning Grasp Strategies with Partial Shape Information. AAAI 2008: 1491-1494
89 Ashutosh Saxena, Min Sun, Andrew Y. Ng: Make3D: Depth Perception from a Single Still Image. AAAI 2008: 1571-1576
88EERion Snow, Brendan O'Connor, Daniel Jurafsky, Andrew Y. Ng: Cheap and Fast - But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks. EMNLP 2008: 254-263
87EEAdam Coates, Pieter Abbeel, Andrew Y. Ng: Learning for control from multiple demonstrations. ICML 2008: 144-151
86EEJ. Zico Kolter, Adam Coates, Andrew Y. Ng, Yi Gu, Charles DuHadway: Space-indexed dynamic programming: learning to follow trajectories. ICML 2008: 488-495
85EEJ. Zico Kolter, Mike P. Rodgers, Andrew Y. Ng: A control architecture for quadruped locomotion over rough terrain. ICRA 2008: 811-818
84EEPieter Abbeel, Dmitri Dolgov, Andrew Y. Ng, Sebastian Thrun: Apprenticeship learning for motion planning with application to parking lot navigation. IROS 2008: 1083-1090
83EEPieter Abbeel, Adam Coates, Timothy Hunter, Andrew Y. Ng: Autonomous Autorotation of an RC Helicopter. ISER 2008: 385-394
82EEAshutosh Saxena, Sung H. Chung, Andrew Y. Ng: 3-D Depth Reconstruction from a Single Still Image. International Journal of Computer Vision 76(1): 53-69 (2008)
2007
81EEAshutosh Saxena, Min Sun, Andrew Y. Ng: 3-D Reconstruction from Sparse Views using Monocular Vision. ICCV 2007: 1-8
80EEAshutosh Saxena, Min Sun, Andrew Y. Ng: Learning 3-D Scene Structure from a Single Still Image. ICCV 2007: 1-8
79EERajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, Andrew Y. Ng: Self-taught learning: transfer learning from unlabeled data. ICML 2007: 759-766
78EEStephen Gould, Joakim Arfvidsson, Adrian Kaehler, Benjamin Sapp, Marius Messner, Gary R. Bradski, Paul Baumstarck, Sukwon Chung, Andrew Y. Ng: Peripheral-Foveal Vision for Real-time Object Recognition and Tracking in Video. IJCAI 2007: 2115-2121
77EEAnna Petrovskaya, Andrew Y. Ng: Probabilistic Mobile Manipulation in Dynamic Environments, with Application to Opening Doors. IJCAI 2007: 2178-2184
76EEAshutosh Saxena, Jamie Schulte, Andrew Y. Ng: Depth Estimation Using Monocular and Stereo Cues. IJCAI 2007: 2197-2203
75EETed Kremenek, Andrew Y. Ng, Dawson R. Engler: A Factor Graph Model for Software Bug Finding. IJCAI 2007: 2510-2516
74EEChuong B. Do, Chuan-Sheng Foo, Andrew Y. Ng: Efficient multiple hyperparameter learning for log-linear models. NIPS 2007
73EEJ. Zico Kolter, Pieter Abbeel, Andrew Y. Ng: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion. NIPS 2007
72EEHonglak Lee, Chaitanya Ekanadham, Andrew Y. Ng: Sparse deep belief net model for visual area V2. NIPS 2007
71EEJ. Zico Kolter, Andrew Y. Ng: Learning omnidirectional path following using dimensionality reduction. Robotics: Science and Systems 2007
2006
70 Su-In Lee, Honglak Lee, Pieter Abbeel, Andrew Y. Ng: Efficient L1 Regularized Logistic Regression. AAAI 2006
69EERion Snow, Daniel Jurafsky, Andrew Y. Ng: Semantic Taxonomy Induction from Heterogenous Evidence. ACL 2006
68EEAndrew Y. Ng: Reinforcement Learning and Apprenticeship Learning for Robotic Control. ALT 2006: 29-31
67EEMike Brzozowski, Kendra Carattini, Scott R. Klemmer, Patrick Mihelich, Jiang Hu, Andrew Y. Ng: groupTime: preference based group scheduling. CHI 2006: 1047-1056
66EEErick Delage, Honglak Lee, Andrew Y. Ng: A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image. CVPR (2) 2006: 2418-2428
65EEAndrew Y. Ng: Reinforcement Learning and Apprenticeship Learning for Robotic Control. Discovery Science 2006: 14
64EEPieter Abbeel, Morgan Quigley, Andrew Y. Ng: Using inaccurate models in reinforcement learning. ICML 2006: 1-8
63EERajat Raina, Andrew Y. Ng, Daphne Koller: Constructing informative priors using transfer learning. ICML 2006: 713-720
62 Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet Singh, Andrew Y. Ng: Quadruped Robot Obstacle Negotiation via Reinforcement Learning. ICRA 2006: 3003-3010
61 Anna Petrovskaya, Oussama Khatib, Sebastian Thrun, Andrew Y. Ng: Bayesian Estimation for Autonomous Object Manipulation based on Tactile Sensors. ICRA 2006: 707-714
60EEAshutosh Saxena, Justin Driemeyer, Justin Kearns, Chioma Osondu, Andrew Y. Ng: Learning to Grasp Novel Objects Using Vision. ISER 2006: 33-42
59EEPieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng: An Application of Reinforcement Learning to Aerobatic Helicopter Flight. NIPS 2006: 1-8
58EEAshutosh Saxena, Justin Driemeyer, Justin Kearns, Andrew Y. Ng: Robotic Grasping of Novel Objects. NIPS 2006: 1209-1216
57EECheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng, Kunle Olukotun: Map-Reduce for Machine Learning on Multicore. NIPS 2006: 281-288
56EEHonglak Lee, Alexis Battle, Rajat Raina, Andrew Y. Ng: Efficient sparse coding algorithms. NIPS 2006: 801-808
55EETed Kremenek, Paul Twohey, Godmar Back, Andrew Y. Ng, Dawson R. Engler: From Uncertainty to Belief: Inferring the Specification Within. OSDI 2006: 161-176
54EEEinat Minkov, William W. Cohen, Andrew Y. Ng: Contextual search and name disambiguation in email using graphs. SIGIR 2006: 27-34
53EEPieter Abbeel, Daphne Koller, Andrew Y. Ng: Learning Factor Graphs in Polynomial Time and Sample Complexity. Journal of Machine Learning Research 7: 1743-1788 (2006)
2005
52 Rajat Raina, Andrew Y. Ng, Christopher D. Manning: Robust Textual Inference Via Learning and Abductive Reasoning. AAAI 2005: 1099-1105
51EEHonglak Lee, Andrew Y. Ng: Spam Deobfuscation using a Hidden Markov Model. CEAS 2005
50EEDragomir Anguelov, Benjamin Taskar, Vassil Chatalbashev, Daphne Koller, Dinkar Gupta, Geremy Heitz, Andrew Y. Ng: Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data. CVPR (2) 2005: 169-176
49EEMasayoshi Matsuoka, Alan Chen, Surya P. N. Singh, Adam Coates, Andrew Y. Ng, Sebastian Thrun: Autonomous Helicopter Tracking and Localization Using a Self-Surveying Camera Array. FSR 2005: 19-30
48EEAria Haghighi, Andrew Y. Ng, Christopher D. Manning: Robust Textual Inference via Graph Matching. HLT/EMNLP 2005
47EEPieter Abbeel, Andrew Y. Ng: Exploration and apprenticeship learning in reinforcement learning. ICML 2005: 1-8
46EEJeff Michels, Ashutosh Saxena, Andrew Y. Ng: High speed obstacle avoidance using monocular vision and reinforcement learning. ICML 2005: 593-600
45EEErick Delage, Honglak Lee, Andrew Y. Ng: Automatic Single-Image 3d Reconstructions of Indoor Manhattan World Scenes. ISRR 2005: 305-321
44EEYirong Shen, Andrew Y. Ng, Matthias Seeger: Fast Gaussian Process Regression using KD-Trees. NIPS 2005
43EEAshutosh Saxena, Sung H. Chung, Andrew Y. Ng: Learning Depth from Single Monocular Images. NIPS 2005
42EEPieter Abbeel, Varun Ganapathi, Andrew Y. Ng: Learning vehicular dynamics, with application to modeling helicopters. NIPS 2005
41EEJ. Andrew Bagnell, Andrew Y. Ng: On Local Rewards and Scaling Distributed Reinforcement Learning. NIPS 2005
40EEChuong B. Do, Andrew Y. Ng: Transfer learning for text classification. NIPS 2005
39EEPieter Abbeel, Adam Coates, Michael Montemerlo, Andrew Y. Ng, Sebastian Thrun: Discriminative Training of Kalman Filters. Robotics: Science and Systems 2005: 289-296
38EEPieter Abbeel, Daphne Koller, Andrew Y. Ng: Learning Factor Graphs in Polynomial Time & Sample Complexity. UAI 2005: 1-9
2004
37EEPieter Abbeel, Andrew Y. Ng: Apprenticeship learning via inverse reinforcement learning. ICML 2004
36EEKristina Toutanova, Christopher D. Manning, Andrew Y. Ng: Learning random walk models for inducing word dependency distributions. ICML 2004
35EEShai Shalev-Shwartz, Yoram Singer, Andrew Y. Ng: Online and batch learning of pseudo-metrics. ICML 2004
34EEAndrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger, Eric Liang: Autonomous Inverted Helicopter Flight via Reinforcement Learning. ISER 2004: 363-372
33EERion Snow, Daniel Jurafsky, Andrew Y. Ng: Learning Syntactic Patterns for Automatic Hypernym Discovery. NIPS 2004
32EEPieter Abbeel, Andrew Y. Ng: Learning first-order Markov models for control. NIPS 2004
31EESham M. Kakade, Andrew Y. Ng: Online Bounds for Bayesian Algorithms. NIPS 2004
30EEAndrew Y. Ng, H. Jin Kim: Stable adaptive control with online learning. NIPS 2004
29EESebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y. Ng, Zoubin Ghahramani, Hugh F. Durrant-Whyte: Simultaneous Localization and Mapping with Sparse Extended Information Filters. I. J. Robotic Res. 23(7-8): 693-716 (2004)
2003
28EEAndrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry: Autonomous Helicopter Flight via Reinforcement Learning. NIPS 2003
27EERajat Raina, Yirong Shen, Andrew Y. Ng, Andrew McCallum: Classification with Hybrid Generative/Discriminative Models. NIPS 2003
26EEJ. Andrew Bagnell, Sham Kakade, Andrew Y. Ng, Jeff G. Schneider: Policy Search by Dynamic Programming. NIPS 2003
25EEDavid M. Blei, Andrew Y. Ng, Michael I. Jordan: Latent Dirichlet Allocation. Journal of Machine Learning Research 3: 993-1022 (2003)
2002
24EEEric P. Xing, Andrew Y. Ng, Michael I. Jordan, Stuart J. Russell: Distance Metric Learning with Application to Clustering with Side-Information. NIPS 2002: 505-512
23EESusan T. Dumais, Michele Banko, Eric Brill, Jimmy J. Lin, Andrew Y. Ng: Web question answering: is more always better?. SIGIR 2002: 291-298
22 Michael J. Kearns, Yishay Mansour, Andrew Y. Ng: A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes. Machine Learning 49(2-3): 193-208 (2002)
2001
21 Andrew Y. Ng, Michael I. Jordan: Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection. ICML 2001: 377-384
20 Andrew Y. Ng, Alice X. Zheng, Michael I. Jordan: Link Analysis, Eigenvectors and Stability. IJCAI 2001: 903-910
19EEDavid M. Blei, Andrew Y. Ng, Michael I. Jordan: Latent Dirichlet Allocation. NIPS 2001: 601-608
18EEAndrew Y. Ng, Michael I. Jordan: On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. NIPS 2001: 841-848
17EEAndrew Y. Ng, Michael I. Jordan, Yair Weiss: On Spectral Clustering: Analysis and an algorithm. NIPS 2001: 849-856
16 Alice X. Zheng, Andrew Y. Ng, Michael I. Jordan: Stable Algorithms for Link Analysis. SIGIR 2001: 258-266
15EEEric Brill, Jimmy J. Lin, Michele Banko, Susan T. Dumais, Andrew Y. Ng: Data-Intensive Question Answering. TREC 2001
2000
14 Andrew Y. Ng, Stuart J. Russell: Algorithms for Inverse Reinforcement Learning. ICML 2000: 663-670
13EEAndrew Y. Ng, Michael I. Jordan: PEGASUS: A policy search method for large MDPs and POMDPs. UAI 2000: 406-415
1999
12 Andrew Y. Ng, Daishi Harada, Stuart J. Russell: Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping. ICML 1999: 278-287
11 Michael J. Kearns, Yishay Mansour, Andrew Y. Ng: A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes. IJCAI 1999: 1324-1231
10EEMichael J. Kearns, Yishay Mansour, Andrew Y. Ng: Approximate Planning in Large POMDPs via Reusable Trajectories. NIPS 1999: 1001-1007
9EEAndrew Y. Ng, Ronald Parr, Daphne Koller: Policy Search via Density Estimation. NIPS 1999: 1022-1028
8EEAndrew Y. Ng, Michael I. Jordan: Approximate Inference A lgorithms for Two-Layer Bayesian Networks. NIPS 1999: 533-539
1998
7 Scott Davies, Andrew Y. Ng, Andrew W. Moore: Applying Online Search Techniques to Continuous-State Reinforcement Learning. AAAI/IAAI 1998: 753-760
6 Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, Andrew Y. Ng: Improving Text Classification by Shrinkage in a Hierarchy of Classes. ICML 1998: 359-367
5 Andrew Y. Ng: On Feature Selection: Learning with Exponentially Many Irrelevant Features as Training Examples. ICML 1998: 404-412
1997
4 Andrew Y. Ng: Preventing "Overfitting" of Cross-Validation Data. ICML 1997: 245-253
3EEMichael J. Kearns, Yishay Mansour, Andrew Y. Ng: An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering. UAI 1997: 282-293
2 Michael J. Kearns, Yishay Mansour, Andrew Y. Ng, Dana Ron: An Experimental and Theoretical Comparison of Model Selection Methods. Machine Learning 27(1): 7-50 (1997)
1995
1EEMichael J. Kearns, Yishay Mansour, Andrew Y. Ng, Dana Ron: An Experimental and Theoretical Comparison of Model Selection Methods. COLT 1995: 21-30

Coauthor Index

1Pieter Abbeel [32] [37] [38] [39] [42] [47] [53] [59] [64] [70] [73] [83] [84] [87]
2Dragomir Anguelov [50]
3Joakim Arfvidsson [78]
4Godmar Back [55]
5J. Andrew Bagnell [26] [41]
6Michele Banko [15] [23]
7Alexis Battle [56] [79]
8Paul Baumstarck [78]
9Eric Berger [34]
10David M. Blei [19] [25]
11Gary R. Bradski [57] [78]
12Eric Brill [15] [23]
13Mike Brzozowski [67]
14Kendra Carattini [67]
15Vassil Chatalbashev [50]
16Alan Chen [49]
17Cheng-Tao Chu [57]
18Sukwon Chung [78]
19Sung H. Chung [43] [82]
20Adam Coates [34] [39] [49] [59] [83] [86] [87]
21William W. Cohen [54]
22Scott Davies [7]
23Erick Delage [45] [66]
24Mark Diel [34]
25Chuong B. Do [40] [74]
26Dmitri Dolgov [84]
27Justin Driemeyer [58] [60]
28Charles DuHadway [86]
29Susan T. Dumais [15] [23]
30Hugh F. Durrant-Whyte [29]
31Chaitanya Ekanadham [72]
32Dawson R. Engler [55] [75]
33Chuan-Sheng Foo [74]
34Varun Ganapathi [34] [42]
35Zoubin Ghahramani [29]
36Stephen Gould [78]
37Yi Gu [86]
38Dinkar Gupta [50]
39Aria Haghighi [48]
40Daishi Harada [12]
41Geremy Heitz [50]
42Jiang Hu [67]
43Timothy Hunter [83]
44Michael I. Jordan [8] [13] [16] [17] [18] [19] [20] [21] [24] [25] [28]
45Daniel Jurafsky [33] [69] [88]
46Adrian Kaehler [78]
47Sham M. Kakade (Sham Kakade) [26] [31]
48Justin Kearns [58] [60]
49Michael J. Kearns [1] [2] [3] [10] [11] [22]
50Oussama Khatib [61]
51H. Jin Kim [28] [30]
52Sang Kyun Kim [57]
53Scott R. Klemmer [67]
54Daphne Koller [9] [29] [38] [50] [53] [63]
55J. Zico Kolter [71] [73] [85] [86]
56Ted Kremenek [55] [75]
57Honglak Lee [45] [51] [56] [62] [66] [70] [72] [79]
58Su-In Lee [70]
59Eric Liang [34]
60Jimmy J. Lin [15] [23]
61Yi-An Lin [57]
62Yufeng Liu [29]
63Christopher D. Manning [36] [48] [52]
64Yishay Mansour [1] [2] [3] [10] [11] [22]
65Masayoshi Matsuoka [49]
66Andrew McCallum [6] [27]
67Marius Messner [78]
68Jeff Michels [46]
69Patrick Mihelich [67]
70Einat Minkov [54]
71Tom M. Mitchell [6]
72Michael Montemerlo [39]
73Andrew W. Moore [7]
74Brendan O'Connor [88]
75Kunle Olukotun (Oyekunle A. Olukotun) [57]
76Chioma Osondu [60]
77Benjamin Packer [79]
78Ronald Parr [9]
79Anna Petrovskaya [61] [77]
80Morgan Quigley [59] [64]
81Rajat Raina [27] [52] [56] [63] [79]
82Mike P. Rodgers [85]
83Dana Ron [1] [2]
84Ronald Rosenfeld (Roni Rosenfeld) [6]
85Stuart J. Russell [12] [14] [24]
86Benjamin Sapp [78] [91]
87Shankar Sastry (Shankar S. Sastry) [28]
88Ashutosh Saxena [43] [46] [58] [60] [76] [80] [81] [82] [89] [90] [91]
89Jeff G. Schneider [26]
90Jamie Schulte [34] [76]
91Matthias Seeger [44]
92Shai Shalev-Shwartz [35]
93Yirong Shen [27] [44] [62]
94Yoram Singer [35]
95Gurjeet Singh [62]
96Surya P. N. Singh [49]
97Rion Snow [33] [69] [88]
98Min Sun [80] [81] [89]
99Benjamin Taskar (Ben Taskar) [50]
100Sebastian Thrun [29] [39] [49] [61] [84]
101Kristina Toutanova [36]
102Ben Tse [34]
103Paul Twohey [55]
104Yair Weiss [17]
105Lawson L. S. Wong [90]
106Eric P. Xing [24]
107Chih-Han Yu [62]
108YuanYuan Yu [57]
109Alice X. Zheng [16] [20]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)