2008 | ||
---|---|---|
91 | Benjamin Sapp, Ashutosh Saxena, Andrew Y. Ng: A Fast Data Collection and Augmentation Procedure for Object Recognition. AAAI 2008: 1402-1408 | |
90 | Ashutosh Saxena, Lawson L. S. Wong, Andrew Y. Ng: Learning Grasp Strategies with Partial Shape Information. AAAI 2008: 1491-1494 | |
89 | Ashutosh Saxena, Min Sun, Andrew Y. Ng: Make3D: Depth Perception from a Single Still Image. AAAI 2008: 1571-1576 | |
88 | EE | Rion Snow, Brendan O'Connor, Daniel Jurafsky, Andrew Y. Ng: Cheap and Fast - But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks. EMNLP 2008: 254-263 |
87 | EE | Adam Coates, Pieter Abbeel, Andrew Y. Ng: Learning for control from multiple demonstrations. ICML 2008: 144-151 |
86 | EE | J. Zico Kolter, Adam Coates, Andrew Y. Ng, Yi Gu, Charles DuHadway: Space-indexed dynamic programming: learning to follow trajectories. ICML 2008: 488-495 |
85 | EE | J. Zico Kolter, Mike P. Rodgers, Andrew Y. Ng: A control architecture for quadruped locomotion over rough terrain. ICRA 2008: 811-818 |
84 | EE | Pieter Abbeel, Dmitri Dolgov, Andrew Y. Ng, Sebastian Thrun: Apprenticeship learning for motion planning with application to parking lot navigation. IROS 2008: 1083-1090 |
83 | EE | Pieter Abbeel, Adam Coates, Timothy Hunter, Andrew Y. Ng: Autonomous Autorotation of an RC Helicopter. ISER 2008: 385-394 |
82 | EE | Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng: 3-D Depth Reconstruction from a Single Still Image. International Journal of Computer Vision 76(1): 53-69 (2008) |
2007 | ||
81 | EE | Ashutosh Saxena, Min Sun, Andrew Y. Ng: 3-D Reconstruction from Sparse Views using Monocular Vision. ICCV 2007: 1-8 |
80 | EE | Ashutosh Saxena, Min Sun, Andrew Y. Ng: Learning 3-D Scene Structure from a Single Still Image. ICCV 2007: 1-8 |
79 | EE | Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, Andrew Y. Ng: Self-taught learning: transfer learning from unlabeled data. ICML 2007: 759-766 |
78 | EE | Stephen Gould, Joakim Arfvidsson, Adrian Kaehler, Benjamin Sapp, Marius Messner, Gary R. Bradski, Paul Baumstarck, Sukwon Chung, Andrew Y. Ng: Peripheral-Foveal Vision for Real-time Object Recognition and Tracking in Video. IJCAI 2007: 2115-2121 |
77 | EE | Anna Petrovskaya, Andrew Y. Ng: Probabilistic Mobile Manipulation in Dynamic Environments, with Application to Opening Doors. IJCAI 2007: 2178-2184 |
76 | EE | Ashutosh Saxena, Jamie Schulte, Andrew Y. Ng: Depth Estimation Using Monocular and Stereo Cues. IJCAI 2007: 2197-2203 |
75 | EE | Ted Kremenek, Andrew Y. Ng, Dawson R. Engler: A Factor Graph Model for Software Bug Finding. IJCAI 2007: 2510-2516 |
74 | EE | Chuong B. Do, Chuan-Sheng Foo, Andrew Y. Ng: Efficient multiple hyperparameter learning for log-linear models. NIPS 2007 |
73 | EE | J. Zico Kolter, Pieter Abbeel, Andrew Y. Ng: Hierarchical Apprenticeship Learning with Application to Quadruped Locomotion. NIPS 2007 |
72 | EE | Honglak Lee, Chaitanya Ekanadham, Andrew Y. Ng: Sparse deep belief net model for visual area V2. NIPS 2007 |
71 | EE | J. Zico Kolter, Andrew Y. Ng: Learning omnidirectional path following using dimensionality reduction. Robotics: Science and Systems 2007 |
2006 | ||
70 | Su-In Lee, Honglak Lee, Pieter Abbeel, Andrew Y. Ng: Efficient L1 Regularized Logistic Regression. AAAI 2006 | |
69 | EE | Rion Snow, Daniel Jurafsky, Andrew Y. Ng: Semantic Taxonomy Induction from Heterogenous Evidence. ACL 2006 |
68 | EE | Andrew Y. Ng: Reinforcement Learning and Apprenticeship Learning for Robotic Control. ALT 2006: 29-31 |
67 | EE | Mike Brzozowski, Kendra Carattini, Scott R. Klemmer, Patrick Mihelich, Jiang Hu, Andrew Y. Ng: groupTime: preference based group scheduling. CHI 2006: 1047-1056 |
66 | EE | Erick Delage, Honglak Lee, Andrew Y. Ng: A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image. CVPR (2) 2006: 2418-2428 |
65 | EE | Andrew Y. Ng: Reinforcement Learning and Apprenticeship Learning for Robotic Control. Discovery Science 2006: 14 |
64 | EE | Pieter Abbeel, Morgan Quigley, Andrew Y. Ng: Using inaccurate models in reinforcement learning. ICML 2006: 1-8 |
63 | EE | Rajat Raina, Andrew Y. Ng, Daphne Koller: Constructing informative priors using transfer learning. ICML 2006: 713-720 |
62 | Honglak Lee, Yirong Shen, Chih-Han Yu, Gurjeet Singh, Andrew Y. Ng: Quadruped Robot Obstacle Negotiation via Reinforcement Learning. ICRA 2006: 3003-3010 | |
61 | Anna Petrovskaya, Oussama Khatib, Sebastian Thrun, Andrew Y. Ng: Bayesian Estimation for Autonomous Object Manipulation based on Tactile Sensors. ICRA 2006: 707-714 | |
60 | EE | Ashutosh Saxena, Justin Driemeyer, Justin Kearns, Chioma Osondu, Andrew Y. Ng: Learning to Grasp Novel Objects Using Vision. ISER 2006: 33-42 |
59 | EE | Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng: An Application of Reinforcement Learning to Aerobatic Helicopter Flight. NIPS 2006: 1-8 |
58 | EE | Ashutosh Saxena, Justin Driemeyer, Justin Kearns, Andrew Y. Ng: Robotic Grasping of Novel Objects. NIPS 2006: 1209-1216 |
57 | EE | Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski, Andrew Y. Ng, Kunle Olukotun: Map-Reduce for Machine Learning on Multicore. NIPS 2006: 281-288 |
56 | EE | Honglak Lee, Alexis Battle, Rajat Raina, Andrew Y. Ng: Efficient sparse coding algorithms. NIPS 2006: 801-808 |
55 | EE | Ted Kremenek, Paul Twohey, Godmar Back, Andrew Y. Ng, Dawson R. Engler: From Uncertainty to Belief: Inferring the Specification Within. OSDI 2006: 161-176 |
54 | EE | Einat Minkov, William W. Cohen, Andrew Y. Ng: Contextual search and name disambiguation in email using graphs. SIGIR 2006: 27-34 |
53 | EE | Pieter Abbeel, Daphne Koller, Andrew Y. Ng: Learning Factor Graphs in Polynomial Time and Sample Complexity. Journal of Machine Learning Research 7: 1743-1788 (2006) |
2005 | ||
52 | Rajat Raina, Andrew Y. Ng, Christopher D. Manning: Robust Textual Inference Via Learning and Abductive Reasoning. AAAI 2005: 1099-1105 | |
51 | EE | Honglak Lee, Andrew Y. Ng: Spam Deobfuscation using a Hidden Markov Model. CEAS 2005 |
50 | EE | Dragomir Anguelov, Benjamin Taskar, Vassil Chatalbashev, Daphne Koller, Dinkar Gupta, Geremy Heitz, Andrew Y. Ng: Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data. CVPR (2) 2005: 169-176 |
49 | EE | Masayoshi Matsuoka, Alan Chen, Surya P. N. Singh, Adam Coates, Andrew Y. Ng, Sebastian Thrun: Autonomous Helicopter Tracking and Localization Using a Self-Surveying Camera Array. FSR 2005: 19-30 |
48 | EE | Aria Haghighi, Andrew Y. Ng, Christopher D. Manning: Robust Textual Inference via Graph Matching. HLT/EMNLP 2005 |
47 | EE | Pieter Abbeel, Andrew Y. Ng: Exploration and apprenticeship learning in reinforcement learning. ICML 2005: 1-8 |
46 | EE | Jeff Michels, Ashutosh Saxena, Andrew Y. Ng: High speed obstacle avoidance using monocular vision and reinforcement learning. ICML 2005: 593-600 |
45 | EE | Erick Delage, Honglak Lee, Andrew Y. Ng: Automatic Single-Image 3d Reconstructions of Indoor Manhattan World Scenes. ISRR 2005: 305-321 |
44 | EE | Yirong Shen, Andrew Y. Ng, Matthias Seeger: Fast Gaussian Process Regression using KD-Trees. NIPS 2005 |
43 | EE | Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng: Learning Depth from Single Monocular Images. NIPS 2005 |
42 | EE | Pieter Abbeel, Varun Ganapathi, Andrew Y. Ng: Learning vehicular dynamics, with application to modeling helicopters. NIPS 2005 |
41 | EE | J. Andrew Bagnell, Andrew Y. Ng: On Local Rewards and Scaling Distributed Reinforcement Learning. NIPS 2005 |
40 | EE | Chuong B. Do, Andrew Y. Ng: Transfer learning for text classification. NIPS 2005 |
39 | EE | Pieter Abbeel, Adam Coates, Michael Montemerlo, Andrew Y. Ng, Sebastian Thrun: Discriminative Training of Kalman Filters. Robotics: Science and Systems 2005: 289-296 |
38 | EE | Pieter Abbeel, Daphne Koller, Andrew Y. Ng: Learning Factor Graphs in Polynomial Time & Sample Complexity. UAI 2005: 1-9 |
2004 | ||
37 | EE | Pieter Abbeel, Andrew Y. Ng: Apprenticeship learning via inverse reinforcement learning. ICML 2004 |
36 | EE | Kristina Toutanova, Christopher D. Manning, Andrew Y. Ng: Learning random walk models for inducing word dependency distributions. ICML 2004 |
35 | EE | Shai Shalev-Shwartz, Yoram Singer, Andrew Y. Ng: Online and batch learning of pseudo-metrics. ICML 2004 |
34 | EE | Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger, Eric Liang: Autonomous Inverted Helicopter Flight via Reinforcement Learning. ISER 2004: 363-372 |
33 | EE | Rion Snow, Daniel Jurafsky, Andrew Y. Ng: Learning Syntactic Patterns for Automatic Hypernym Discovery. NIPS 2004 |
32 | EE | Pieter Abbeel, Andrew Y. Ng: Learning first-order Markov models for control. NIPS 2004 |
31 | EE | Sham M. Kakade, Andrew Y. Ng: Online Bounds for Bayesian Algorithms. NIPS 2004 |
30 | EE | Andrew Y. Ng, H. Jin Kim: Stable adaptive control with online learning. NIPS 2004 |
29 | EE | Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y. Ng, Zoubin Ghahramani, Hugh F. Durrant-Whyte: Simultaneous Localization and Mapping with Sparse Extended Information Filters. I. J. Robotic Res. 23(7-8): 693-716 (2004) |
2003 | ||
28 | EE | Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry: Autonomous Helicopter Flight via Reinforcement Learning. NIPS 2003 |
27 | EE | Rajat Raina, Yirong Shen, Andrew Y. Ng, Andrew McCallum: Classification with Hybrid Generative/Discriminative Models. NIPS 2003 |
26 | EE | J. Andrew Bagnell, Sham Kakade, Andrew Y. Ng, Jeff G. Schneider: Policy Search by Dynamic Programming. NIPS 2003 |
25 | EE | David M. Blei, Andrew Y. Ng, Michael I. Jordan: Latent Dirichlet Allocation. Journal of Machine Learning Research 3: 993-1022 (2003) |
2002 | ||
24 | EE | Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, Stuart J. Russell: Distance Metric Learning with Application to Clustering with Side-Information. NIPS 2002: 505-512 |
23 | EE | Susan T. Dumais, Michele Banko, Eric Brill, Jimmy J. Lin, Andrew Y. Ng: Web question answering: is more always better?. SIGIR 2002: 291-298 |
22 | Michael J. Kearns, Yishay Mansour, Andrew Y. Ng: A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes. Machine Learning 49(2-3): 193-208 (2002) | |
2001 | ||
21 | Andrew Y. Ng, Michael I. Jordan: Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection. ICML 2001: 377-384 | |
20 | Andrew Y. Ng, Alice X. Zheng, Michael I. Jordan: Link Analysis, Eigenvectors and Stability. IJCAI 2001: 903-910 | |
19 | EE | David M. Blei, Andrew Y. Ng, Michael I. Jordan: Latent Dirichlet Allocation. NIPS 2001: 601-608 |
18 | EE | Andrew Y. Ng, Michael I. Jordan: On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. NIPS 2001: 841-848 |
17 | EE | Andrew Y. Ng, Michael I. Jordan, Yair Weiss: On Spectral Clustering: Analysis and an algorithm. NIPS 2001: 849-856 |
16 | Alice X. Zheng, Andrew Y. Ng, Michael I. Jordan: Stable Algorithms for Link Analysis. SIGIR 2001: 258-266 | |
15 | EE | Eric Brill, Jimmy J. Lin, Michele Banko, Susan T. Dumais, Andrew Y. Ng: Data-Intensive Question Answering. TREC 2001 |
2000 | ||
14 | Andrew Y. Ng, Stuart J. Russell: Algorithms for Inverse Reinforcement Learning. ICML 2000: 663-670 | |
13 | EE | Andrew Y. Ng, Michael I. Jordan: PEGASUS: A policy search method for large MDPs and POMDPs. UAI 2000: 406-415 |
1999 | ||
12 | Andrew Y. Ng, Daishi Harada, Stuart J. Russell: Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping. ICML 1999: 278-287 | |
11 | Michael J. Kearns, Yishay Mansour, Andrew Y. Ng: A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes. IJCAI 1999: 1324-1231 | |
10 | EE | Michael J. Kearns, Yishay Mansour, Andrew Y. Ng: Approximate Planning in Large POMDPs via Reusable Trajectories. NIPS 1999: 1001-1007 |
9 | EE | Andrew Y. Ng, Ronald Parr, Daphne Koller: Policy Search via Density Estimation. NIPS 1999: 1022-1028 |
8 | EE | Andrew Y. Ng, Michael I. Jordan: Approximate Inference A lgorithms for Two-Layer Bayesian Networks. NIPS 1999: 533-539 |
1998 | ||
7 | Scott Davies, Andrew Y. Ng, Andrew W. Moore: Applying Online Search Techniques to Continuous-State Reinforcement Learning. AAAI/IAAI 1998: 753-760 | |
6 | Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, Andrew Y. Ng: Improving Text Classification by Shrinkage in a Hierarchy of Classes. ICML 1998: 359-367 | |
5 | Andrew Y. Ng: On Feature Selection: Learning with Exponentially Many Irrelevant Features as Training Examples. ICML 1998: 404-412 | |
1997 | ||
4 | Andrew Y. Ng: Preventing "Overfitting" of Cross-Validation Data. ICML 1997: 245-253 | |
3 | EE | Michael J. Kearns, Yishay Mansour, Andrew Y. Ng: An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering. UAI 1997: 282-293 |
2 | Michael J. Kearns, Yishay Mansour, Andrew Y. Ng, Dana Ron: An Experimental and Theoretical Comparison of Model Selection Methods. Machine Learning 27(1): 7-50 (1997) | |
1995 | ||
1 | EE | Michael J. Kearns, Yishay Mansour, Andrew Y. Ng, Dana Ron: An Experimental and Theoretical Comparison of Model Selection Methods. COLT 1995: 21-30 |