dblp.uni-trier.dewww.uni-trier.de

Michael I. Jordan

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2009
168EEArchana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox, Michael I. Jordan, David A. Patterson: Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning. ICDE 2009: 592-603
167EEMichael I. Jordan: Combinatorial stochastic processes and nonparametric Bayesian modeling. SODA 2009: 139
2008
166EEChris Ding, Tao Li, Michael I. Jordan: Nonnegative Matrix Factorization for Combinatorial Optimization: Spectral Clustering, Graph Matching, and Clique Finding. ICDM 2008: 183-192
165EEEmily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky: An HDP-HMM for systems with state persistence. ICML 2008: 312-319
164EEPercy Liang, Michael I. Jordan: An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators. ICML 2008: 584-591
163EEGuillaume Obozinski, Martin J. Wainwright, Michael I. Jordan: High-dimensional support union recovery in multivariate regression. NIPS 2008: 1217-1224
162EEErik B. Sudderth, Michael I. Jordan: Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes. NIPS 2008: 1585-1592
161EEAlexandre Bouchard-Côté, Michael I. Jordan, Dan Klein: Efficient Inference in Phylogenetic InDel Trees. NIPS 2008: 177-184
160EEZhihua Zhang, Michael I. Jordan, Dit-Yan Yeung: Posterior Consistency of the Silverman g-prior in Bayesian Model Choice. NIPS 2008: 1969-1976
159EEEmily B. Fox, Erik B. Sudderth, Michael I. Jordan, Alan S. Willsky: Nonparametric Bayesian Learning of Switching Linear Dynamical Systems. NIPS 2008: 457-464
158EELing Huang, Donghui Yan, Michael I. Jordan, Nina Taft: Spectral Clustering with Perturbed Data. NIPS 2008: 705-712
157EESimon Lacoste-Julien, Fei Sha, Michael I. Jordan: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification. NIPS 2008: 897-904
156EESriram Sankararaman, Gad Kimmel, Eran Halperin, Michael I. Jordan: On the Inference of Ancestries in Admixed Populations. RECOMB 2008: 424-433
155EEWei Xu, Ling Huang, Armando Fox, David A. Patterson, Michael I. Jordan: Mining Console Logs for Large-Scale System Problem Detection. SysML 2008
154EECharles A. Sutton, Michael I. Jordan: Probabilistic Inference in Queueing Networks. SysML 2008
153EEKurt T. Miller, Thomas L. Griffiths, Michael I. Jordan: The Phylogenetic Indian Buffet Process: A Non-Exchangeable Nonparametric Prior for Latent Features. UAI 2008: 403-410
152EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: Estimating divergence functionals and the likelihood ratio by convex risk minimization CoRR abs/0809.0853: (2008)
151EEMartin J. Wainwright, Michael I. Jordan: Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends in Machine Learning 1(1-2): 1-305 (2008)
150EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: On Optimal Quantization Rules for Some Problems in Sequential Decentralized Detection. IEEE Transactions on Information Theory 54(7): 3285-3295 (2008)
2007
149EEMichael I. Jordan: Statistical Machine Learning and Computational Biology. BIBM 2007: 4
148EEJyri J. Kivinen, Erik B. Sudderth, Michael I. Jordan: Learning Multiscale Representations of Natural Scenes Using Dirichlet Processes. ICCV 2007: 1-8
147EETao Li, Chris Ding, Michael I. Jordan: Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization. ICDM 2007: 577-582
146EEJyri J. Kivinen, Erik B. Sudderth, Michael I. Jordan: Image Denoising with Nonparametric Hidden Markov Trees. ICIP (3) 2007: 121-124
145EEPercy Liang, Michael I. Jordan, Benjamin Taskar: A permutation-augmented sampler for DP mixture models. ICML 2007: 545-552
144EEJens Nilsson, Fei Sha, Michael I. Jordan: Regression on manifolds using kernel dimension reduction. ICML 2007: 697-704
143EELing Huang, XuanLong Nguyen, Minos N. Garofalakis, Joseph M. Hellerstein, Michael I. Jordan, Anthony D. Joseph, Nina Taft: Communication-Efficient Online Detection of Network-Wide Anomalies. INFOCOM 2007: 134-142
142EEPercy Liang, Dan Klein, Michael I. Jordan: Agreement-Based Learning. NIPS 2007
141EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization. NIPS 2007
140EEBen Blum, Michael I. Jordan, David Kim, Rhiju Das, Philip Bradley, David Baker: Feature Selection Methods for Improving Protein Structure Prediction with Rosetta. NIPS 2007
139EEEric P. Xing, Michael I. Jordan, Roded Sharan: Bayesian Haplotype Inference via the Dirichlet Process. Journal of Computational Biology 14(3): 267-284 (2007)
2006
138EESimon Lacoste-Julien, Benjamin Taskar, Dan Klein, Michael I. Jordan: Word Alignment via Quadratic Assignment. HLT-NAACL 2006
137EEEric P. Xing, Kyung-Ah Sohn, Michael I. Jordan, Yee Whye Teh: Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture. ICML 2006: 1049-1056
136EEAlice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, Alex Aiken: Statistical debugging: simultaneous identification of multiple bugs. ICML 2006: 1105-1112
135EEBarbara E. Engelhardt, Michael I. Jordan, Steven E. Brenner: A graphical model for predicting protein molecular function. ICML 2006: 297-304
134EELing Huang, XuanLong Nguyen, Minos N. Garofalakis, Michael I. Jordan, Anthony D. Joseph, Nina Taft: In-Network PCA and Anomaly Detection. NIPS 2006: 617-624
133EEZhihua Zhang, Michael I. Jordan: Bayesian Multicategory Support Vector Machines. UAI 2006
132EEDavid M. Blei, K. Franks, Michael I. Jordan, I. Saira Mian: Statistical modeling of biomedical corpora: mining the Caenorhabditis Genetic Center Bibliography for genes related to life span. BMC Bioinformatics 7: 250 (2006)
131EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: On optimal quantization rules for some sequential decision problems CoRR abs/math/0608556: (2006)
130EEBenjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan: Structured Prediction, Dual Extragradient and Bregman Projections. Journal of Machine Learning Research 7: 1627-1653 (2006)
129EEFrancis R. Bach, Michael I. Jordan: Learning Spectral Clustering, With Application To Speech Separation. Journal of Machine Learning Research 7: 1963-2001 (2006)
128EEJon D. McAuliffe, David M. Blei, Michael I. Jordan: Nonparametric empirical Bayes for the Dirichlet process mixture model. Statistics and Computing 16(1): 5-14 (2006)
2005
127EEPeter Bodík, Greg Friedman, Lukas Biewald, Helen Levine, George Candea, Kayur Patel, Gilman Tolle, Jonathan Hui, Armando Fox, Michael I. Jordan, David A. Patterson: Combining Visualization and Statistical Analysis to Improve Operator Confidence and Efficiency for Failure Detection and Localization. ICAC 2005: 89-100
126EEFrancis R. Bach, Michael I. Jordan: Predictive low-rank decomposition for kernel methods. ICML 2005: 33-40
125EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: Divergences, surrogate loss functions and experimental design. NIPS 2005
124EEPatrick Flaherty, Michael I. Jordan, Adam P. Arkin: Robust design of biological experiments. NIPS 2005
123EEBenjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan: Structured Prediction via the Extragradient Method. NIPS 2005
122EEBen Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, Michael I. Jordan: Scalable statistical bug isolation. PLDI 2005: 15-26
121EEMichal Rosen-Zvi, Michael I. Jordan, Alan L. Yuille: The DLR Hierarchy of Approximate Inference. UAI 2005: 493-500
120EEPatrick Flaherty, Guri Giaever, Jochen Kumm, Michael I. Jordan, Adam P. Arkin: A latent variable model for chemogenomic profiling. Bioinformatics 21(15): 3286-3293 (2005)
119EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: On divergences, surrogate loss functions, and decentralized detection CoRR abs/math/0510521: (2005)
118EEXuanLong Nguyen, Michael I. Jordan, Bruno Sinopoli: A kernel-based learning approach to ad hoc sensor network localization. TOSN 1(1): 134-152 (2005)
2004
117EENeil D. Lawrence, John C. Platt, Michael I. Jordan: Extensions of the Informative Vector Machine. Deterministic and Statistical Methods in Machine Learning 2004: 56-87
116EEMike Y. Chen, Alice X. Zheng, Jim Lloyd, Michael I. Jordan, Eric A. Brewer: Failure Diagnosis Using Decision Trees. ICAC 2004: 36-43
115EEEric P. Xing, Roded Sharan, Michael I. Jordan: Bayesian haplo-type inference via the dirichlet process. ICML 2004
114EEXuanLong Nguyen, Martin J. Wainwright, Michael I. Jordan: Decentralized detection and classification using kernel methods. ICML 2004
113EEFrancis R. Bach, Gert R. G. Lanckriet, Michael I. Jordan: Multiple kernel learning, conic duality, and the SMO algorithm. ICML 2004
112EEDavid M. Blei, Michael I. Jordan: Variational methods for the Dirichlet process. ICML 2004
111EEAlexandre d'Aspremont, Laurent El Ghaoui, Michael I. Jordan, Gert R. G. Lanckriet: A Direct Formulation for Sparse PCA Using Semidefinite Programming. NIPS 2004
110EEFrancis R. Bach, Michael I. Jordan: Blind One-microphone Speech Separation: A Spectral Learning Approach. NIPS 2004
109EEFrancis R. Bach, Romain Thibaux, Michael I. Jordan: Computing regularization paths for learning multiple kernels. NIPS 2004
108EENeil D. Lawrence, Michael I. Jordan: Semi-supervised Learning via Gaussian Processes. NIPS 2004
107EEYee Whye Teh, Michael I. Jordan, Matthew J. Beal, David M. Blei: Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes. NIPS 2004
106EEGert R. G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, William Stafford Noble: Kernel-Based Data Fusion and Its Application to Protein Function Prediction in Yeast. Pacific Symposium on Biocomputing 2004: 300-311
105EEEric P. Xing, Michael I. Jordan: Graph Partition Strategies for Generalized Mean Field Inference. UAI 2004: 602-610
104EEJon D. McAuliffe, Lior Pachter, Michael I. Jordan: Multiple-sequence functional annotation and the generalized hidden Markov phylogeny. Bioinformatics 20(12): 1850-1860 (2004)
103EEGert R. G. Lanckriet, Tijl De Bie, Nello Cristianini, Michael I. Jordan, William Stafford Noble: A statistical framework for genomic data fusion. Bioinformatics 20(16): 2626-2635 (2004)
102EEAlexandre d'Aspremont, Laurent El Ghaoui, Michael I. Jordan, Gert R. G. Lanckriet: A direct formulation for sparse PCA using semidefinite programming CoRR cs.CE/0406021: (2004)
101EEEric P. Xing, Wei Wu, Michael I. Jordan, Richard M. Karp: Logos: a Modular Bayesian Model for de Novo Motif Detection. J. Bioinformatics and Computational Biology 2(1): 127-154 (2004)
100EEChiranjib Bhattacharyya, L. R. Grate, Michael I. Jordan, Laurent El Ghaoui, I. Saira Mian: Robust Sparse Hyperplane Classifiers: Application to Uncertain Molecular Profiling Data. Journal of Computational Biology 11(6): 1073-1089 (2004)
99EEGert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan: Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research 5: 27-72 (2004)
98EEKenji Fukumizu, Francis R. Bach, Michael I. Jordan: Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces. Journal of Machine Learning Research 5: 73-99 (2004)
2003
97EEEric P. Xing, Wei Wu, Michael I. Jordan, Richard M. Karp: LOGOS: a modular Bayesian model for de novo motif detection. CSB 2003: 266-276
96EEFernando De Bernardinis, Michael I. Jordan, Alberto L. Sangiovanni-Vincentelli: Support vector machines for analog circuit performance representation. DAC 2003: 964-969
95EEAndrew Y. Ng, H. Jin Kim, Michael I. Jordan, Shankar Sastry: Autonomous Helicopter Flight via Reinforcement Learning. NIPS 2003
94EEDavid M. Blei, Thomas L. Griffiths, Michael I. Jordan, Joshua B. Tenenbaum: Hierarchical Topic Models and the Nested Chinese Restaurant Process. NIPS 2003
93EEKenji Fukumizu, Francis R. Bach, Michael I. Jordan: Kernel Dimensionality Reduction for Supervised Learning. NIPS 2003
92EEPeter L. Bartlett, Michael I. Jordan, Jon D. McAuliffe: Large Margin Classifiers: Convex Loss, Low Noise, and Convergence Rates. NIPS 2003
91EEFrancis R. Bach, Michael I. Jordan: Learning Spectral Clustering. NIPS 2003
90EEXuanLong Nguyen, Michael I. Jordan: On the Concentration of Expectation and Approximate Inference in Layered Networks. NIPS 2003
89EEMartin J. Wainwright, Michael I. Jordan: Semidefinite Relaxations for Approximate Inference on Graphs with Cycles. NIPS 2003
88EEAlice X. Zheng, Michael I. Jordan, Ben Liblit, Alexander Aiken: Statistical Debugging of Sampled Programs. NIPS 2003
87EEBen Liblit, Alexander Aiken, Alice X. Zheng, Michael I. Jordan: Bug isolation via remote program sampling. PLDI 2003: 141-154
86EEDavid M. Blei, Michael I. Jordan: Modeling annotated data. SIGIR 2003: 127-134
85 Eric P. Xing, Michael I. Jordan, Stuart J. Russell: A generalized mean field algorithm for variational inference in exponential families. UAI 2003: 583-591
84EEKobus Barnard, Pinar Duygulu, David A. Forsyth, Nando de Freitas, David M. Blei, Michael I. Jordan: Matching Words and Pictures. Journal of Machine Learning Research 3: 1107-1135 (2003)
83EEDavid M. Blei, Andrew Y. Ng, Michael I. Jordan: Latent Dirichlet Allocation. Journal of Machine Learning Research 3: 993-1022 (2003)
82EEFrancis R. Bach, Michael I. Jordan: Beyond Independent Components: Trees and Clusters. Journal of Machine Learning Research 4: 1205-1233 (2003)
81 Christophe Andrieu, Nando de Freitas, Arnaud Doucet, Michael I. Jordan: An Introduction to MCMC for Machine Learning. Machine Learning 50(1-2): 5-43 (2003)
80EEChiranjib Bhattacharyya, L. R. Grate, A. Rizki, D. Radisky, F. J. Molina, Michael I. Jordan, Mina J. Bissell, I. Saira Mian: Simultaneous classification and relevant feature identification in high-dimensional spaces: application to molecular profiling data. Signal Processing 83(4): 729-743 (2003)
2002
79 Gert R. G. Lanckriet, Nello Cristianini, Peter L. Bartlett, Laurent El Ghaoui, Michael I. Jordan: Learning the Kernel Matrix with Semi-Definite Programming. ICML 2002: 323-330
78EEFrancis R. Bach, Michael I. Jordan: Learning Graphical Models with Mercer Kernels. NIPS 2002: 1009-1016
77EEEric P. Xing, Michael I. Jordan, Richard M. Karp, Stuart J. Russell: A Hierarchical Bayesian Markovian Model for Motifs in Biopolymer Sequences. NIPS 2002: 1489-1496
76EEEmanuel Todorov, Michael I. Jordan: A Minimal Intervention Principle for Coordinated Movement. NIPS 2002: 27-34
75EEEric P. Xing, Andrew Y. Ng, Michael I. Jordan, Stuart J. Russell: Distance Metric Learning with Application to Clustering with Side-Information. NIPS 2002: 505-512
74EEGert R. G. Lanckriet, Laurent El Ghaoui, Michael I. Jordan: Robust Novelty Detection with Single-Class MPM. NIPS 2002: 905-912
73 Francis R. Bach, Michael I. Jordan: Tree-dependent Component Analysis. UAI 2002: 36-44
72 Sekhar Tatikonda, Michael I. Jordan: Loopy Belief Propogation and Gibbs Measures. UAI 2002: 493-500
71EEL. R. Grate, Chiranjib Bhattacharyya, Michael I. Jordan, I. Saira Mian: Simultaneous Relevant Feature Identification and Classification in High-Dimensional Spaces. WABI 2002: 1-9
70EEFrancis R. Bach, Michael I. Jordan: Kernel Independent Component Analysis. Journal of Machine Learning Research 3: 1-48 (2002)
69EEGert R. G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, Michael I. Jordan: A Robust Minimax Approach to Classification. Journal of Machine Learning Research 3: 555-582 (2002)
68EEMichael I. Jordan, Terrence J. Sejnowski: Graphical Models: Foundations of Neural Computation. Pattern Anal. Appl. 5(4): 401-402 (2002)
2001
67 Andrew Y. Ng, Michael I. Jordan: Convergence rates of the Voting Gibbs classifier, with application to Bayesian feature selection. ICML 2001: 377-384
66 Eric P. Xing, Michael I. Jordan, Richard M. Karp: Feature selection for high-dimensional genomic microarray data. ICML 2001: 601-608
65 Andrew Y. Ng, Alice X. Zheng, Michael I. Jordan: Link Analysis, Eigenvectors and Stability. IJCAI 2001: 903-910
64EEFrancis R. Bach, Michael I. Jordan: Thin Junction Trees. NIPS 2001: 569-576
63EEDavid M. Blei, Andrew Y. Ng, Michael I. Jordan: Latent Dirichlet Allocation. NIPS 2001: 601-608
62EEGert R. G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, Michael I. Jordan: Minimax Probability Machine. NIPS 2001: 801-807
61EEAndrew Y. Ng, Michael I. Jordan: On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes. NIPS 2001: 841-848
60EEAndrew Y. Ng, Michael I. Jordan, Yair Weiss: On Spectral Clustering: Analysis and an algorithm. NIPS 2001: 849-856
59 Alice X. Zheng, Andrew Y. Ng, Michael I. Jordan: Stable Algorithms for Link Analysis. SIGIR 2001: 258-266
58EEAmol Deshpande, Minos N. Garofalakis, Michael I. Jordan: Efficient Stepwise Selection in Decomposable Models. UAI 2001: 128-135
57 Jinwen Ma, Lei Xu, Michael I. Jordan: Asymptotic Convergence Rate of the EM Algorithm for Gaussian Mixtures. Neural Computation 12(12): 2881-2907 (2001)
2000
56EEAndrew Y. Ng, Michael I. Jordan: PEGASUS: A policy search method for large MDPs and POMDPs. UAI 2000: 406-415
55EEMarina Meila, Michael I. Jordan: Learning with Mixtures of Trees. Journal of Machine Learning Research 1: 1-48 (2000)
54 Lawrence K. Saul, Michael I. Jordan: Attractor Dynamics in Feedforward Neural Networks. Neural Computation 12(6): 1313-1335 (2000)
1999
53EEAndrew Y. Ng, Michael I. Jordan: Approximate Inference A lgorithms for Two-Layer Bayesian Networks. NIPS 1999: 533-539
52EEKevin P. Murphy, Yair Weiss, Michael I. Jordan: Loopy Belief Propagation for Approximate Inference: An Empirical Study. UAI 1999: 467-475
51EETommi Jaakkola, Michael I. Jordan: Variational Probabilistic Inference and the QMR-DT Network. J. Artif. Intell. Res. (JAIR) 10: 291-322 (1999)
50 Lawrence K. Saul, Michael I. Jordan: Mixed Memory Markov Models: Decomposing Complex Stochastic Processes as Mixtures of Simpler Ones. Machine Learning 37(1): 75-87 (1999)
49 Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, Lawrence K. Saul: An Introduction to Variational Methods for Graphical Models. Machine Learning 37(2): 183-233 (1999)
1998
48 Michael I. Jordan, Michael J. Kearns, Sara A. Solla: Advances in Neural Information Processing Systems 10, [NIPS Conference, Denver, Colorado, USA, 1997] The MIT Press 1998
47EEThomas Hofmann, Jan Puzicha, Michael I. Jordan: Learning from Dyadic Data. NIPS 1998: 466-472
46EENeil D. Lawrence, Christopher M. Bishop, Michael I. Jordan: Mixture Representations for Inference and Learning in Boltzmann Machines. UAI 1998: 320-327
1997
45 Michael Mozer, Michael I. Jordan, Thomas Petsche: Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA, December 2-5, 1996 MIT Press 1997
44 John F. Houde, Michael I. Jordan: Adaptation in Speech Motor Control. NIPS 1997
43 Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, Michael I. Jordan: Approximating Posterior Distributions in Belief Networks Using Mixtures. NIPS 1997
42 Marina Meila, Michael I. Jordan: Estimating Dependency Structure as a Hidden Variable. NIPS 1997
41 Michael I. Jordan, Christopher M. Bishop: Neural Networks. The Computer Science and Engineering Handbook 1997: 536-556
40 Zoubin Ghahramani, Michael I. Jordan: Factorial Hidden Markov Models. Machine Learning 29(2-3): 245-273 (1997)
39EEPadhraic Smyth, David Heckerman, Michael I. Jordan: Probabilistic Independence Networks for Hidden Markov Probability Models. Neural Computation 9(2): 227-269 (1997)
1996
38EELawrence K. Saul, Michael I. Jordan: A Variational Principle for Model-based Morphing. NIPS 1996: 267-273
37EETommi Jaakkola, Michael I. Jordan: Recursive Algorithms for Approximating Probabilities in Graphical Models. NIPS 1996: 487-493
36EEMichael I. Jordan, Zoubin Ghahramani, Lawrence K. Saul: Hidden Markov Decision Trees. NIPS 1996: 501-507
35EEMarina Meila, Michael I. Jordan: Triangulation by Continuous Embedding. NIPS 1996: 557-563
34EETommi Jaakkola, Michael I. Jordan: Computing upper and lower bounds on likelihoods in intractable networks. UAI 1996: 340-348
33 Michael I. Jordan, Christopher M. Bishop: Neural Networks. ACM Comput. Surv. 28(1): 73-75 (1996)
32EELawrence K. Saul, Tommi Jaakkola, Michael I. Jordan: Mean Field Theory for Sigmoid Belief Networks CoRR cs.AI/9603102: (1996)
31EEDavid A. Cohn, Zoubin Ghahramani, Michael I. Jordan: Active Learning with Statistical Models CoRR cs.AI/9603104: (1996)
30 David A. Cohn, Zoubin Ghahramani, Michael I. Jordan: Active Learning with Statistical Models. J. Artif. Intell. Res. (JAIR) 4: 129-145 (1996)
29 Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan: Mean Field Theory for Sigmoid Belief Networks. J. Artif. Intell. Res. (JAIR) 4: 61-76 (1996)
1995
28EEMarina Meila, Michael I. Jordan: Learning Fine Motion by Markov Mixtures of Experts. NIPS 1995: 1003-1009
27EEPhilip N. Sabes, Michael I. Jordan: Reinforcement Learning by Probability Matching. NIPS 1995: 1080-1086
26EEZoubin Ghahramani, Michael I. Jordan: Factorial Hidden Markov Models. NIPS 1995: 472-478
25EELawrence K. Saul, Michael I. Jordan: Exploiting Tractable Substructures in Intractable Networks. NIPS 1995: 486-492
24EETommi Jaakkola, Lawrence K. Saul, Michael I. Jordan: Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks. NIPS 1995: 528-534
23EEMichael I. Jordan, Lei Xu: Convergence results for the EM approach to mixtures of experts architectures. Neural Networks 8(9): 1409-1431 (1995)
1994
22EEMichael I. Jordan: A Statistical Approach to Decision Tree Modeling. COLT 1994: 13-20
21 Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan: Learning Without State-Estimation in Partially Observable Markovian Decision Processes. ICML 1994: 284-292
20 Michael I. Jordan: A Statistical Approach to Decision Tree Modeling. ICML 1994: 363-370
19EEZoubin Ghahramani, Daniel M. Wolpert, Michael I. Jordan: Computational Structure of coordinate transformations: A generalization study. NIPS 1994: 1125-1132
18EETommi Jaakkola, Satinder P. Singh, Michael I. Jordan: Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. NIPS 1994: 345-352
17EESatinder P. Singh, Tommi Jaakkola, Michael I. Jordan: Reinforcement Learning with Soft State Aggregation. NIPS 1994: 361-368
16EEDaniel M. Wolpert, Zoubin Ghahramani, Michael I. Jordan: Forward dynamic models in human motor control: Psychophysical evidence. NIPS 1994: 43-50
15EELawrence K. Saul, Michael I. Jordan: Boltzmann Chains and Hidden Markov Models. NIPS 1994: 435-442
14EELei Xu, Michael I. Jordan, Geoffrey E. Hinton: An Alternative Model for Mixtures of Experts. NIPS 1994: 633-640
13EEDavid A. Cohn, Zoubin Ghahramani, Michael I. Jordan: Active Learning with Statistical Models. NIPS 1994: 705-712
1993
12 Michael I. Jordan, Robert A. Jacobs: Supervised Learning and Divide-and-Conquer: A Statistical Approach. ICML 1993: 159-166
11 Robert A. Jacobs, Michael I. Jordan, Andrew G. Barto: Task Decompostiion Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks. Machine Learning: From Theory to Applications 1993: 175-202
10EEZoubin Ghahramani, Michael I. Jordan: Supervised learning from incomplete data via an EM approach. NIPS 1993: 120-127
9EETommi Jaakkola, Michael I. Jordan, Satinder P. Singh: Convergence of Stochastic Iterative Dynamic Programming Algorithms. NIPS 1993: 703-710
1992
8EEDaphne Bavelier, Michael I. Jordan: A Dynamical Model of Priming and Repetition Blindness. NIPS 1992: 879-886
7 Michael I. Jordan, David E. Rumelhart: Forward Models: Supervised Learning with a Distal Teacher. Cognitive Science 16(3): 307-354 (1992)
1991
6 Michael I. Jordan, David E. Rumelhart: Internal World Models and Supervised Learning. ML 1991: 70-74
5EEMakoto Hirayama, Eric Vatikiotis-Bateson, Mitsuo Kawato, Michael I. Jordan: Forward Dynamics Modeling of Speech Motor Control Using Physiological Data. NIPS 1991: 191-198
4EEMichael I. Jordan, Robert A. Jacobs: Hierarchies of Adaptive Experts. NIPS 1991: 985-992
3 Robert A. Jacobs, Michael I. Jordan, Andrew G. Barto: Task Decomposition Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks. Cognitive Science 15(2): 219-250 (1991)
1990
2EERobert A. Jacobs, Michael I. Jordan: A Competitive Modular Connectionist Architecture. NIPS 1990: 767-773
1989
1EEMichael I. Jordan, Robert A. Jacobs: Learning to Control an Unstable System with Forward Modeling. NIPS 1989: 324-331

Coauthor Index

1Alexander Aiken (Alex Aiken) [87] [88] [122] [136]
2Christophe Andrieu [81]
3Adam P. Arkin [120] [124]
4Francis R. Bach (Francis Bach) [64] [70] [73] [78] [82] [91] [93] [98] [109] [110] [113] [126] [129]
5David Baker [140]
6Kobus Barnard [84]
7Peter L. Bartlett [79] [92] [99]
8Andrew G. Barto [3] [11]
9Daphne Bavelier [8]
10Matthew J. Beal [107]
11Fernando De Bernardinis [96]
12Chiranjib Bhattacharyya (Chiru Bhattacharyya) [62] [69] [71] [80] [100]
13Tijl De Bie [103]
14Lukas Biewald [127]
15Christopher M. Bishop [33] [41] [43] [46]
16Mina J. Bissell [80]
17David M. Blei [63] [83] [84] [86] [94] [107] [112] [128] [132]
18Ben Blum [140]
19Peter Bodík [127]
20Alexandre Bouchard-Côté [161]
21Philip Bradley [140]
22Steven E. Brenner [135]
23Eric A. Brewer [116]
24George Candea [127]
25Mike Y. Chen [116]
26David A. Cohn [13] [30] [31]
27Nello Cristianini [79] [99] [103] [106]
28Rhiju Das [140]
29Umeshwar Dayal [168]
30Minghua Deng [106]
31Amol Deshpande [58]
32Chris Ding [147] [166]
33Arnaud Doucet [81]
34Pinar Duygulu [84]
35Barbara E. Engelhardt [135]
36Patrick Flaherty [120] [124]
37David A. Forsyth [84]
38Armando Fox [127] [155] [168]
39Emily B. Fox [159] [165]
40K. Franks [132]
41Nando de Freitas [81] [84]
42Greg Friedman [127]
43Kenji Fukumizu [93] [98]
44Archana Ganapathi [168]
45Minos N. Garofalakis [58] [134] [143]
46Zoubin Ghahramani [10] [13] [16] [19] [26] [30] [31] [36] [40] [49]
47Laurent El Ghaoui [62] [69] [74] [79] [99] [100] [102] [111]
48Guri Giaever [120]
49L. R. Grate [71] [80] [100]
50Thomas L. Griffiths [94] [153]
51Eran Halperin [156]
52David Heckerman [39]
53Joseph M. Hellerstein [143]
54Geoffrey E. Hinton [14]
55Makoto Hirayama [5]
56Thomas Hofmann [47]
57John F. Houde [44]
58Ling Huang [134] [143] [155] [158]
59Jonathan Hui [127]
60Tommi Jaakkola [9] [17] [18] [21] [24] [29] [32] [34] [37] [43] [49] [51]
61Robert A. Jacobs [1] [2] [3] [4] [11] [12]
62Anthony D. Joseph [134] [143]
63Richard M. Karp [66] [77] [97] [101]
64Mitsuo Kawato [5]
65Michael J. Kearns [48]
66David Kim [140]
67H. Jin Kim [95]
68Gad Kimmel [156]
69Jyri J. Kivinen [146] [148]
70Dan Klein [138] [142] [161]
71Jochen Kumm [120]
72Harumi A. Kuno [168]
73Simon Lacoste-Julien [123] [130] [138] [157]
74Gert R. G. Lanckriet [62] [69] [74] [79] [99] [102] [103] [106] [111] [113]
75Neil D. Lawrence [43] [46] [108] [117]
76Helen Levine [127]
77Tao Li [147] [166]
78Percy Liang [142] [145] [164]
79Ben Liblit [87] [88] [122] [136]
80Jim Lloyd [116]
81Jinwen Ma [57]
82Jon D. McAuliffe [92] [104] [128]
83Marina Meila [28] [35] [42] [55]
84I. Saira Mian [71] [80] [100] [132]
85Kurt T. Miller [153]
86F. J. Molina [80]
87Michael C. Mozer (Michael Mozer) [45]
88Kevin P. Murphy [52]
89Mayur Naik [122] [136]
90Andrew Y. Ng [53] [56] [59] [60] [61] [63] [65] [67] [75] [83] [95]
91XuanLong Nguyen [90] [114] [118] [119] [125] [131] [134] [141] [143] [150] [152]
92Jens Nilsson [144]
93William Stafford Noble [103] [106]
94Guillaume Obozinski [163]
95Lior Pachter [104]
96Kayur Patel [127]
97David A. Patterson [127] [155] [168]
98Thomas Petsche [45]
99John C. Platt [117]
100Jan Puzicha [47]
101D. Radisky [80]
102A. Rizki [80]
103Michal Rosen-Zvi [121]
104David E. Rumelhart [6] [7]
105Stuart J. Russell [75] [77] [85]
106Philip N. Sabes [27]
107Alberto L. Sangiovanni-Vincentelli [96]
108Sriram Sankararaman [156]
109Shankar Sastry (Shankar S. Sastry) [95]
110Lawrence K. Saul [15] [24] [25] [29] [32] [36] [38] [49] [50] [54]
111Terrence J. Sejnowski [68]
112Fei Sha [144] [157]
113Roded Sharan [115] [139]
114Satinder P. Singh [9] [17] [18] [21]
115Bruno Sinopoli [118]
116Padhraic Smyth [39]
117Kyung-Ah Sohn [137]
118Sara A. Solla [48]
119Erik B. Sudderth [146] [148] [159] [162] [165]
120Charles A. Sutton [154]
121Nina Taft (Nina Taft Plotkin) [134] [143] [158]
122Benjamin Taskar (Ben Taskar) [123] [130] [138] [145]
123Sekhar Tatikonda [72]
124Yee Whye Teh [107] [137]
125Joshua B. Tenenbaum [94]
126Romain Thibaux [109]
127Emanuel Todorov [76]
128Gilman Tolle [127]
129Eric Vatikiotis-Bateson [5]
130Martin J. Wainwright [89] [114] [119] [125] [131] [141] [150] [151] [152] [163]
131Yair Weiss [52] [60]
132Janet L. Wiener [168]
133Alan S. Willsky [159] [165]
134Daniel M. Wolpert [16] [19]
135Wei Wu [97] [101]
136Eric P. Xing [66] [75] [77] [85] [97] [101] [105] [115] [137] [139]
137Lei Xu [14] [23] [57]
138Wei Xu [155]
139Donghui Yan [158]
140Dit-Yan Yeung [160]
141Alan L. Yuille [121]
142Zhihua Zhang [133] [160]
143Alice X. Zheng [59] [65] [87] [88] [116] [122] [136]
144Alexandre d'Aspremont [102] [111]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)