2009 |
86 | EE | Haizheng Zhang,
Myra Spiliopoulou,
Bamshad Mobasher,
C. Lee Giles,
Andrew McCallum,
Olfa Nasraoui,
Jaideep Srivastava,
John Yen:
Advances in Web Mining and Web Usage Analysis, 9th International Workshop on Knowledge Discovery on the Web, WebKDD 2007, and 1st International Workshop on Social Networks Analysis, SNA-KDD 2007, San Jose, CA, USA, August 12-15, 2007. Revised Papers
Springer 2009 |
2008 |
85 | | William W. Cohen,
Andrew McCallum,
Sam T. Roweis:
Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008
ACM 2008 |
84 | EE | Robert Hall,
Charles A. Sutton,
Andrew McCallum:
Unsupervised deduplication using cross-field dependencies.
KDD 2008: 310-317 |
83 | EE | Michael L. Wick,
Khashayar Rohanimanesh,
Karl Schultz,
Andrew McCallum:
A unified approach for schema matching, coreference and canonicalization.
KDD 2008: 722-730 |
82 | EE | Michael L. Wick,
Khashayar Rohanimanesh,
Andrew McCallum,
AnHai Doan:
A Discriminative Approach to Ontology Mapping.
NTII 2008: 16-19 |
81 | EE | Gregory Druck,
Gideon S. Mann,
Andrew McCallum:
Learning from labeled features using generalized expectation criteria.
SIGIR 2008: 595-602 |
80 | EE | David M. Mimno,
Andrew McCallum:
Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression.
UAI 2008: 411-418 |
2007 |
79 | EE | Pallika Kanani,
Andrew McCallum:
Resource-Bounded Information Gathering for Correlation Clustering.
COLT 2007: 625-627 |
78 | EE | Aron Culotta,
Michael L. Wick,
Andrew McCallum:
First-Order Probabilistic Models for Coreference Resolution.
HLT-NAACL 2007: 81-88 |
77 | EE | Gideon S. Mann,
Andrew McCallum:
Efficient Computation of Entropy Gradient for Semi-Supervised Conditional Random Fields.
HLT-NAACL (Short Papers) 2007: 109-112 |
76 | EE | Vidit Jain,
Erik G. Learned-Miller,
Andrew McCallum:
People-LDA: Anchoring Topics to People using Face Recognition.
ICCV 2007: 1-8 |
75 | EE | Gary B. Huang,
Erik G. Learned-Miller,
Andrew McCallum:
Cryptogram Decoding for OCR Using Numerization Strings.
ICDAR 2007: 208-212 |
74 | EE | Xuerui Wang,
Andrew McCallum,
Xing Wei:
Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval.
ICDM 2007: 697-702 |
73 | EE | Gideon S. Mann,
Andrew McCallum:
Simple, robust, scalable semi-supervised learning via expectation regularization.
ICML 2007: 593-600 |
72 | EE | David M. Mimno,
Wei Li,
Andrew McCallum:
Mixtures of hierarchical topics with Pachinko allocation.
ICML 2007: 633-640 |
71 | EE | Charles A. Sutton,
Andrew McCallum:
Piecewise pseudolikelihood for efficient training of conditional random fields.
ICML 2007: 863-870 |
70 | EE | Pallika Kanani,
Andrew McCallum,
Chris Pal:
Improving Author Coreference by Resource-Bounded Information Gathering from the Web.
IJCAI 2007: 429-434 |
69 | EE | David M. Mimno,
Andrew McCallum:
Mining a digital library for influential authors.
JCDL 2007: 105-106 |
68 | EE | David M. Mimno,
Andrew McCallum:
Organizing the OCA: learning faceted subjects from a library of digital books.
JCDL 2007: 376-385 |
67 | EE | Aron Culotta,
Michael L. Wick,
Robert Hall,
Matthew Marzilli,
Andrew McCallum:
Canonicalization of database records using adaptive similarity measures.
KDD 2007: 201-209 |
66 | EE | Gregory Druck,
Chris Pal,
Andrew McCallum,
Xiaojin Zhu:
Semi-supervised classification with hybrid generative/discriminative methods.
KDD 2007: 280-289 |
65 | EE | David M. Mimno,
Andrew McCallum:
Expertise modeling for matching papers with reviewers.
KDD 2007: 500-509 |
64 | EE | Xuerui Wang,
Chris Pal,
Andrew McCallum:
Generalized component analysis for text with heterogeneous attributes.
KDD 2007: 794-803 |
63 | EE | Andrew McCallum,
Xuerui Wang,
Andrés Corrada-Emmanuel:
Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email.
J. Artif. Intell. Res. (JAIR) 30: 249-272 (2007) |
62 | EE | Haizheng Zhang,
John Yen,
C. Lee Giles,
Bamshad Mobasher,
Myra Spiliopoulou,
Jaideep Srivastava,
Olfa Nasraoui,
Andrew McCallum:
WebKDD/SNAKDD 2007: web mining and social network analysis post-workshop report.
SIGKDD Explorations 9(2): 87-92 (2007) |
2006 |
61 | | Andrew McCallum,
Chris Pal,
Gregory Druck,
Xuerui Wang:
Multi-Conditional Learning: Generative/Discriminative Training for Clustering and Classification.
AAAI 2006 |
60 | EE | Shaolei Feng,
R. Manmatha,
Andrew McCallum:
Exploring the Use of Conditional Random Field Models and HMMs for Historical Handwritten Document Recognition.
DIAL 2006: 30-37 |
59 | EE | Aron Culotta,
Andrew McCallum,
Jonathan Betz:
Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text.
HLT-NAACL 2006 |
58 | EE | Charles A. Sutton,
Michael Sindelar,
Andrew McCallum:
Reducing Weight Undertraining in Structured Discriminative Learning.
HLT-NAACL 2006 |
57 | EE | Wei Li,
Andrew McCallum:
Pachinko allocation: DAG-structured mixture models of topic correlations.
ICML 2006: 577-584 |
56 | EE | B. Michael Kelm,
Chris Pal,
Andrew McCallum:
Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning.
ICPR (2) 2006: 828-832 |
55 | EE | Gideon S. Mann,
David M. Mimno,
Andrew McCallum:
Bibliometric impact measures leveraging topic analysis.
JCDL 2006: 65-74 |
54 | EE | Xuerui Wang,
Andrew McCallum:
Topics over time: a non-Markov continuous-time model of topical trends.
KDD 2006: 424-433 |
53 | EE | Andrew McCallum:
Information extraction, data mining and joint inference.
KDD 2006: 835 |
52 | EE | Aron Culotta,
Trausti T. Kristjansson,
Andrew McCallum,
Paul A. Viola:
Corrective feedback and persistent learning for information extraction.
Artif. Intell. 170(14-15): 1101-1122 (2006) |
51 | EE | Fuchun Peng,
Andrew McCallum:
Information extraction from research papers using conditional random fields.
Inf. Process. Manage. 42(4): 963-979 (2006) |
50 | EE | Xing Wei,
W. Bruce Croft,
Andrew McCallum:
Table extraction for answer retrieval.
Inf. Retr. 9(5): 589-611 (2006) |
2005 |
49 | | Aron Culotta,
Andrew McCallum:
Reducing Labeling Effort for Structured Prediction Tasks.
AAAI 2005: 746-751 |
48 | | Wei Li,
Andrew McCallum:
Semi-Supervised Sequence Modeling with Syntactic Topic Models.
AAAI 2005: 813-818 |
47 | EE | Nadia Ghamrawi,
Andrew McCallum:
Collective multi-label classification.
CIKM 2005: 195-200 |
46 | EE | Aron Culotta,
Andrew McCallum:
Joint deduplication of multiple record types in relational data.
CIKM 2005: 257-258 |
45 | EE | Charles A. Sutton,
Andrew McCallum:
Composition of Conditional Random Fields for Transfer Learning.
HLT/EMNLP 2005 |
44 | EE | Ron Bekkerman,
Ran El-Yaniv,
Andrew McCallum:
Multi-way distributional clustering via pairwise interactions.
ICML 2005: 41-48 |
43 | EE | Andrew McCallum,
Andrés Corrada-Emmanuel,
Xuerui Wang:
Topic and Role Discovery in Social Networks.
IJCAI 2005: 786-791 |
42 | EE | Yu Gu,
Andrew McCallum,
Donald F. Towsley:
Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation.
Internet Measurment Conference 2005: 345-350 |
41 | EE | Xuerui Wang,
Natasha Mohanty,
Andrew McCallum:
Group and Topic Discovery from Relations and Their Attributes.
NIPS 2005 |
40 | EE | Andrew McCallum,
Kedar Bellare,
Fernando C. N. Pereira:
A Conditional Random Field for Discriminatively-trained Finite-state String Edit Distance.
UAI 2005: 388-395 |
39 | EE | Charles A. Sutton,
Andrew McCallum:
Piecewise Training for Undirected Models.
UAI 2005: 568-575 |
38 | EE | Ron Bekkerman,
Andrew McCallum:
Disambiguating Web appearances of people in a social network.
WWW 2005: 463-470 |
37 | EE | Andrew McCallum:
Information extraction: distilling structured data from unstructured text.
ACM Queue 3(9): 48-57 (2005) |
2004 |
36 | | Trausti T. Kristjansson,
Aron Culotta,
Paul A. Viola,
Andrew McCallum:
Interactive Information Extraction with Constrained Conditional Random Fields.
AAAI 2004: 412-418 |
35 | EE | Aron Culotta,
Ron Bekkerman,
Andrew McCallum:
Extracting social networks and contact information from email and the Web.
CEAS 2004 |
34 | EE | Fuchun Peng,
Andrew McCallum:
Accurate Information Extraction from Research Papers using Conditional Random Fields.
HLT-NAACL 2004: 329-336 |
33 | EE | Charles A. Sutton,
Khashayar Rohanimanesh,
Andrew McCallum:
Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data.
ICML 2004 |
32 | EE | Andrew McCallum,
Ben Wellner:
Conditional Models of Identity Uncertainty with Application to Noun Coreference.
NIPS 2004 |
31 | EE | Ben Wellner,
Andrew McCallum,
Fuchun Peng,
Michael Hay:
An Integrated, Conditional Model of Information Extraction and Coreference with Appli.
UAI 2004: 593-601 |
2003 |
30 | EE | David Pinto,
Andrew McCallum,
Xing Wei,
W. Bruce Croft:
Table Extraction Using Conditional Random Fields.
DG.O 2003 |
29 | EE | Andrew McCallum,
Ben Wellner:
Toward Conditional Models of Identity Uncertainty with Application to Proper Noun Coreference.
IIWeb 2003: 79-84 |
28 | EE | Rajat Raina,
Yirong Shen,
Andrew Y. Ng,
Andrew McCallum:
Classification with Hybrid Generative/Discriminative Models.
NIPS 2003 |
27 | EE | David Pinto,
Andrew McCallum,
Xing Wei,
W. Bruce Croft:
Table extraction using conditional random fields.
SIGIR 2003: 235-242 |
26 | | Andrew McCallum:
Efficiently Inducing Features of Conditional Random Fields.
UAI 2003: 403-410 |
25 | EE | Wei Li,
Andrew McCallum:
Rapid development of Hindi named entity recognition using conditional random fields and feature induction.
ACM Trans. Asian Lang. Inf. Process. 2(3): 290-294 (2003) |
24 | EE | James Allan,
Jay Aslam,
Nicholas J. Belkin,
Chris Buckley,
James P. Callan,
W. Bruce Croft,
Susan T. Dumais,
Norbert Fuhr,
Donna Harman,
David J. Harper,
Djoerd Hiemstra,
Thomas Hofmann,
Eduard H. Hovy,
Wessel Kraaij,
John D. Lafferty,
Victor Lavrenko,
David D. Lewis,
Liz Liddy,
R. Manmatha,
Andrew McCallum,
Jay M. Ponte,
John M. Prager,
Dragomir R. Radev,
Philip Resnik,
Stephen E. Robertson,
Ronald Rosenfeld,
Salim Roukos,
Mark Sanderson,
Richard M. Schwartz,
Amit Singhal,
Alan F. Smeaton,
Howard R. Turtle,
Ellen M. Voorhees,
Ralph M. Weischedel,
Jinxi Xu,
ChengXiang Zhai:
Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002.
SIGIR Forum 37(1): 31-47 (2003) |
2002 |
23 | | David M. Blei,
J. Andrew Bagnell,
Andrew McCallum:
Learning with Scope, with Application to Information Extraction and Classification.
UAI 2002: 53-60 |
2001 |
22 | | John D. Lafferty,
Andrew McCallum,
Fernando C. N. Pereira:
Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
ICML 2001: 282-289 |
21 | | Nicholas Roy,
Andrew McCallum:
Toward Optimal Active Learning through Sampling Estimation of Error Reduction.
ICML 2001: 441-448 |
2000 |
20 | | Dayne Freitag,
Andrew McCallum:
Information Extraction with HMM Structures Learned by Stochastic Optimization.
AAAI/IAAI 2000: 584-589 |
19 | | Huan Chang,
David Cohn,
Andrew McCallum:
Learning to Create Customized Authority Lists.
ICML 2000: 127-134 |
18 | | Andrew McCallum,
Dayne Freitag,
Fernando C. N. Pereira:
Maximum Entropy Markov Models for Information Extraction and Segmentation.
ICML 2000: 591-598 |
17 | EE | Andrew McCallum,
Kamal Nigam,
Lyle H. Ungar:
Efficient clustering of high-dimensional data sets with application to reference matching.
KDD 2000: 169-178 |
16 | EE | Mark Craven,
Dan DiPasquo,
Dayne Freitag,
Andrew McCallum,
Tom M. Mitchell,
Kamal Nigam,
Seán Slattery:
Learning to construct knowledge bases from the World Wide Web.
Artif. Intell. 118(1-2): 69-113 (2000) |
15 | EE | William W. Cohen,
Andrew McCallum,
Dallan Quass:
Learning to Understand the Web.
IEEE Data Eng. Bull. 23(3): 17-24 (2000) |
14 | | Andrew McCallum,
Kamal Nigam,
Jason Rennie,
Kristie Seymore:
Automating the Construction of Internet Portals with Machine Learning.
Inf. Retr. 3(2): 127-163 (2000) |
13 | | Kamal Nigam,
Andrew McCallum,
Sebastian Thrun,
Tom M. Mitchell:
Text Classification from Labeled and Unlabeled Documents using EM.
Machine Learning 39(2/3): 103-134 (2000) |
1999 |
12 | | Jason Rennie,
Andrew McCallum:
Using Reinforcement Learning to Spider the Web Efficiently.
ICML 1999: 335-343 |
11 | | Andrew McCallum,
Kamal Nigam,
Jason Rennie,
Kristie Seymore:
A Machine Learning Approach to Building Domain-Specific Search Engines.
IJCAI 1999: 662-667 |
1998 |
10 | | Mark Craven,
Dan DiPasquo,
Dayne Freitag,
Andrew McCallum,
Tom M. Mitchell,
Kamal Nigam,
Seán Slattery:
Learning to Extract Symbolic Knowledge from the World Wide Web.
AAAI/IAAI 1998: 509-516 |
9 | | Kamal Nigam,
Andrew McCallum,
Sebastian Thrun,
Tom M. Mitchell:
Learning to Classify Text from Labeled and Unlabeled Documents.
AAAI/IAAI 1998: 792-799 |
8 | | Andrew McCallum,
Kamal Nigam:
Employing EM and Pool-Based Active Learning for Text Classification.
ICML 1998: 350-358 |
7 | | Andrew McCallum,
Ronald Rosenfeld,
Tom M. Mitchell,
Andrew Y. Ng:
Improving Text Classification by Shrinkage in a Hierarchy of Classes.
ICML 1998: 359-367 |
6 | EE | L. Douglas Baker,
Andrew McCallum:
Distributional Clustering of Words for Text Classification.
SIGIR 1998: 96-103 |
1995 |
5 | | Andrew McCallum:
Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State.
ICML 1995: 387-395 |
1994 |
4 | EE | Andrew McCallum:
Instance-Based State Identification for Reinforcement Learning.
NIPS 1994: 377-384 |
1993 |
3 | | Andrew McCallum:
Overcoming Incomplete Perception with Util Distinction Memory.
ICML 1993: 190-196 |
1992 |
2 | | Andrew McCallum:
Using Transitional Proximity for Faster Reinforcement Learning.
ML 1992: 316-321 |
1990 |
1 | | Andrew McCallum,
Kent A. Spackman:
Using Genetic Algorithms to Learn Disjunctive Rules from Examples.
ML 1990: 149-152 |