2008 |
41 | EE | Christopher M. Bishop:
A New Framework for Machine Learning.
WCCI 2008: 1-24 |
2006 |
40 | EE | Julia A. Lasserre,
Christopher M. Bishop,
Thomas P. Minka:
Principled Hybrids of Generative and Discriminative Models.
CVPR (1) 2006: 87-94 |
39 | EE | Ilkay Ulusoy,
Christopher M. Bishop:
Comparison of Generative and Discriminative Techniques for Object Detection and Classification.
Toward Category-Level Object Recognition 2006: 173-195 |
2005 |
38 | EE | Ilkay Ulusoy,
Christopher M. Bishop:
Generative versus Discriminative Methods for Object Recognition.
CVPR (2) 2005: 258-265 |
37 | EE | Mark Everingham,
Andrew Zisserman,
Christopher K. I. Williams,
Luc J. Van Gool,
Moray Allan,
Christopher M. Bishop,
Olivier Chapelle,
Navneet Dalal,
Thomas Deselaers,
Gyuri Dorkó,
Stefan Duffner,
Jan Eichhorn,
Jason D. R. Farquhar,
Mario Fritz,
Christophe Garcia,
Tom Griffiths,
Frédéric Jurie,
Daniel Keysers,
Markus Koskela,
Jorma Laaksonen,
Diane Larlus,
Bastian Leibe,
Hongying Meng,
Hermann Ney,
Bernt Schiele,
Cordelia Schmid,
Edgar Seemann,
John Shawe-Taylor,
Amos J. Storkey,
Sándor Szedmák,
Bill Triggs,
Ilkay Ulusoy,
Ville Viitaniemi,
Jianguo Zhang:
The 2005 PASCAL Visual Object Classes Challenge.
MLCW 2005: 117-176 |
36 | EE | John M. Winn,
Christopher M. Bishop:
Variational Message Passing.
Journal of Machine Learning Research 6: 661-694 (2005) |
35 | EE | Markus Svensén,
Christopher M. Bishop:
Robust Bayesian mixture modelling.
Neurocomputing 64: 235-252 (2005) |
2004 |
34 | EE | Christopher M. Bishop,
Ilkay Ulusoy:
Object Recognition via Local Patch Labelling.
Deterministic and Statistical Methods in Machine Learning 2004: 1-21 |
33 | EE | Christopher M. Bishop,
Markus Svensén:
Robust Bayesian Mixture Modelling.
ESANN 2004: 69-74 |
2003 |
32 | | Christopher M. Bishop,
Markus Svensén:
Bayesian Hierarchical Mixtures of Experts.
UAI 2003: 57-64 |
2002 |
31 | EE | Michael E. Tipping,
Christopher M. Bishop:
Bayesian Image Super-Resolution.
NIPS 2002: 1279-1286 |
30 | EE | Christopher M. Bishop,
David J. Spiegelhalter,
John M. Winn:
VIBES: A Variational Inference Engine for Bayesian Networks.
NIPS 2002: 777-784 |
2001 |
29 | EE | Antony I. T. Rowstron,
Neil D. Lawrence,
Christopher M. Bishop:
Probabilistic Modelling of Replica Divergence.
HotOS 2001: 55-60 |
28 | EE | Neil D. Lawrence,
Antony I. T. Rowstron,
Christopher M. Bishop,
M. J. Taylor:
Optimising Synchronisation Times for Mobile Devices.
NIPS 2001: 1401-1408 |
27 | | Boaz Lerner,
W. F. Clocksin,
S. Dhanjal,
M. A. Hulten,
Christopher M. Bishop:
Feature representation and signal classification in fluorescence in-situ hybridization image analysis.
IEEE Transactions on Systems, Man, and Cybernetics, Part A 31(6): 655-665 (2001) |
2000 |
26 | EE | Christopher M. Bishop,
John M. Winn:
Non-linear Bayesian Image Modelling.
ECCV (1) 2000: 3-17 |
25 | EE | Christopher M. Bishop,
Michael E. Tipping:
Variational Relevance Vector Machines.
UAI 2000: 46-53 |
1999 |
24 | | Michael E. Tipping,
Christopher M. Bishop:
Mixtures of Probabilistic Principal Component Analysers.
Neural Computation 11(2): 443-482 (1999) |
23 | EE | Dan Cornford,
Ian T. Nabney,
Christopher M. Bishop:
Neural Network-Based Wind Vector Retrieval from Satellite Scatterometer Data.
Neural Computing and Applications 8(3): 206-217 (1999) |
1998 |
22 | EE | Christopher M. Bishop:
Bayesian PCA.
NIPS 1998: 382-388 |
21 | EE | Neil D. Lawrence,
Christopher M. Bishop,
Michael I. Jordan:
Mixture Representations for Inference and Learning in Boltzmann Machines.
UAI 1998: 320-327 |
20 | EE | Christopher M. Bishop,
Michael E. Tipping:
A Hierarchical Latent Variable Model for Data Visualization.
IEEE Trans. Pattern Anal. Mach. Intell. 20(3): 281-293 (1998) |
19 | | Christopher M. Bishop,
Markus Svensén,
Christopher K. I. Williams:
GTM: The Generative Topographic Mapping.
Neural Computation 10(1): 215-234 (1998) |
18 | EE | Christopher M. Bishop,
Markus Svensén,
Christopher K. I. Williams:
Developments of the generative topographic mapping.
Neurocomputing 21(1-3): 203-224 (1998) |
1997 |
17 | | Christopher M. Bishop,
Neil D. Lawrence,
Tommi Jaakkola,
Michael I. Jordan:
Approximating Posterior Distributions in Belief Networks Using Mixtures.
NIPS 1997 |
16 | | David Barber,
Christopher M. Bishop:
Ensemble Learning for Multi-Layer Networks.
NIPS 1997 |
15 | | Paul W. Goldberg,
Christopher K. I. Williams,
Christopher M. Bishop:
Regression with Input-dependent Noise: A Gaussian Process Treatment.
NIPS 1997 |
14 | | Michael I. Jordan,
Christopher M. Bishop:
Neural Networks.
The Computer Science and Engineering Handbook 1997: 536-556 |
13 | | Christopher M. Bishop:
Bayesian Neural Networks.
J. Braz. Comp. Soc. 4(1): (1997) |
1996 |
12 | | Christopher M. Bishop,
Markus Svensén,
Christopher K. I. Williams:
GTM: A Principled Alternative to the Self-Organizing Map.
ICANN 1996: 165-170 |
11 | | Christopher M. Bishop,
Cazhaow S. Quazaz:
Bayesian Inference of Noise Levels in Regression.
ICANN 1996: 59-64 |
10 | EE | David Barber,
Christopher M. Bishop:
Bayesian Model Comparison by Monte Carlo Chaining.
NIPS 1996: 333-339 |
9 | EE | Christopher M. Bishop,
Cazhaow S. Quazaz:
Regression with Input-Dependent Noise: A Bayesian Treatment.
NIPS 1996: 347-353 |
8 | EE | Christopher M. Bishop,
Markus Svensén,
Christopher K. I. Williams:
GTM: A Principled Alternative to the Self-Organizing Map.
NIPS 1996: 354-360 |
7 | | Michael I. Jordan,
Christopher M. Bishop:
Neural Networks.
ACM Comput. Surv. 28(1): 73-75 (1996) |
1995 |
6 | EE | Christopher M. Bishop,
Markus Svensén,
Christopher K. I. Williams:
EM Optimization of Latent-Variables Density Models.
NIPS 1995: 465-471 |
1994 |
5 | EE | Christopher M. Bishop:
Real-Time Control of a Tokamak Plasma Using Neural Networks.
NIPS 1994: 1007-1014 |
4 | EE | Christopher M. Bishop,
Claire Legleye:
Estimating Conditional Probability Densities for Periodic Variables.
NIPS 1994: 641-648 |
3 | | Christopher M. Bishop,
Paul S. Haynes,
Mike E. U. Smith,
Tom N. Todd,
David L. Trotman:
Fast Feedback Control of a High Temperature Fusion Plasma.
Neural Computing and Applications 2(3): 148-159 (1994) |
1993 |
2 | | Christopher M. Bishop,
Iain Strachan,
John O'Rourke,
Geoff Maddison,
Paul Thomas:
Reconstruction of Tokamak Density Profiles Using Feedforward Networks.
Neural Computing and Applications 1(1): 4-16 (1993) |
1991 |
1 | EE | Christopher M. Bishop:
A Fast Procedure for Retraining the Multilayer Perceptron.
Int. J. Neural Syst. 2(3): 229-236 (1991) |