2008 | ||
---|---|---|
69 | EE | David Sontag, Amir Globerson, Tommi Jaakkola: Clusters and Coarse Partitions in LP Relaxations. NIPS 2008: 1537-1544 |
68 | EE | David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, Yair Weiss: Tightening LP Relaxations for MAP using Message Passing. UAI 2008: 503-510 |
2007 | ||
67 | EE | Amir Globerson, Tommi Jaakkola: Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations. NIPS 2007 |
66 | EE | David Sontag, Tommi Jaakkola: New Outer Bounds on the Marginal Polytope. NIPS 2007 |
2006 | ||
65 | EE | Yuan (Alan) Qi, Patrycja E. Missiuro, Ashish Kapoor, Craig P. Hunter, Tommi Jaakkola, David K. Gifford, Hui Ge: Semi-supervised analysis of gene expression profiles for lineage-specific development in the Caenorhabditis elegans embryo. ISMB (Supplement of Bioinformatics) 2006: 417-423 |
64 | EE | Luis Pérez-Breva, Luis E. Ortiz, Chen-Hsiang Yeang, Tommi Jaakkola: Game Theoretic Algorithms for Protein-DNA binding. NIPS 2006: 1081-1088 |
63 | EE | Yuan (Alan) Qi, Tommi Jaakkola: Parameter Expanded Variational Bayesian Methods. NIPS 2006: 1097-1104 |
62 | EE | Amir Globerson, Tommi Jaakkola: Approximate inference using planar graph decomposition. NIPS 2006: 473-480 |
61 | EE | Chen-Hsiang Yeang, Tommi Jaakkola: Modeling the Combinatorial Functions of Multiple Transcription Factors. Journal of Computational Biology 13(2): 463-480 (2006) |
60 | EE | Marina Meila, Tommi Jaakkola: Tractable Bayesian learning of tree belief networks. Statistics and Computing 16(1): 77-92 (2006) |
2005 | ||
59 | EE | Chen-Hsiang Yeang, Tommi Jaakkola: Modeling the Combinatorial Functions of Multiple Transcription Factors. RECOMB 2005: 506-521 |
58 | EE | Jason D. M. Rennie, Tommi Jaakkola: Using term informativeness for named entity detection. SIGIR 2005: 353-360 |
57 | EE | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming CoRR abs/cs/0508070: (2005) |
56 | EE | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: MAP estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory 51(11): 3697-3717 (2005) |
55 | EE | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: A new class of upper bounds on the log partition function. IEEE Transactions on Information Theory 51(7): 2313-2335 (2005) |
54 | EE | Chen-Hsiang Yeang, Tommi Jaakkola: Time Series Analysis of Gene Expression and Location Data. International Journal on Artificial Intelligence Tools 14(5): 755-770 (2005) |
2004 | ||
53 | EE | Karen Sachs, Omar D. Perez, Dana Pe'er, Garry P. Nolan, David K. Gifford, Tommi Jaakkola, Douglas A. Lauffenburger: Analysis of Signaling Pathways in Human T-Cells Using Bayesian Network Modeling of Single Cell Data. CSB 2004: 644 |
52 | EE | Harald Steck, Tommi Jaakkola: Predictive Discretization During Model Selection. DAGM-Symposium 2004: 1-8 |
51 | EE | Adrian Corduneanu, Tommi Jaakkola: Distributed Information Regularization on Graphs. NIPS 2004 |
50 | EE | Nathan Srebro, Noga Alon, Tommi Jaakkola: Generalization Error Bounds for Collaborative Prediction with Low-Rank Matrices. NIPS 2004 |
49 | EE | Nathan Srebro, Jason D. M. Rennie, Tommi Jaakkola: Maximum-Margin Matrix Factorization. NIPS 2004 |
48 | EE | Chen-Hsiang Yeang, Trey Ideker, Tommi Jaakkola: Physical Network Models. Journal of Computational Biology 11(2/3): 243-262 (2004) |
47 | EE | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: Tree consistency and bounds on the performance of the max-product algorithm and its generalizations. Statistics and Computing 14(2): 143-166 (2004) |
2003 | ||
46 | EE | Chen-Hsiang Yeang, Tommi Jaakkola: Time Series Analysis of Gene Expression and Location Data. BIBE 2003: 305-312 |
45 | Nathan Srebro, Tommi Jaakkola: Weighted Low-Rank Approximations. ICML 2003: 720-727 | |
44 | EE | Harald Steck, Tommi Jaakkola: Bias-Corrected Bootstrap and Model Uncertainty. NIPS 2003 |
43 | EE | Nathan Srebro, Tommi Jaakkola: Linear Dependent Dimensionality Reduction. NIPS 2003 |
42 | EE | Claire Monteleoni, Tommi Jaakkola: Online Learning of Non-stationary Sequences. NIPS 2003 |
41 | EE | Chen-Hsiang Yeang, Tommi Jaakkola: Physical network models and multi-source data integration. RECOMB 2003: 312-321 |
40 | Adrian Corduneanu, Tommi Jaakkola: On Information Regularization. UAI 2003: 151-158 | |
39 | Ziv Bar-Joseph, Erik D. Demaine, David K. Gifford, Nathan Srebro, Angèle M. Hamel, Tommi Jaakkola: K-ary Clustering with Optimal Leaf Ordering for Gene Expression Data. Bioinformatics 19(9): 1070-1078 (2003) | |
38 | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: Tree-based reparameterization framework for analysis of sum-product and related algorithms. IEEE Transactions on Information Theory 49(5): 1120-1146 (2003) | |
37 | EE | Ziv Bar-Joseph, Georg Gerber, David K. Gifford, Tommi Jaakkola, Itamar Simon: Continuous Representations of Time-Series Gene Expression Data. Journal of Computational Biology 10(3/4): 341-356 (2003) |
2002 | ||
36 | EE | Martin Szummer, Tommi Jaakkola: Information Regularization with Partially Labeled Data. NIPS 2002: 1025-1032 |
35 | EE | Harald Steck, Tommi Jaakkola: On the Dirichlet Prior and Bayesian Regularization. NIPS 2002: 697-704 |
34 | EE | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: Exact MAP Estimates by (Hyper)tree Agreement. NIPS 2002: 809-816 |
33 | EE | Alexander J. Hartemink, David K. Gifford, Tommi Jaakkola, Richard A. Young: Combining Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models. Pacific Symposium on Biocomputing 2002: 437-449 |
32 | EE | Ziv Bar-Joseph, Georg Gerber, David K. Gifford, Tommi Jaakkola, Itamar Simon: A new approach to analyzing gene expression time series data. RECOMB 2002: 39-48 |
31 | Adrian Corduneanu, Tommi Jaakkola: Continuation Methods for Mixing Heterogenous Sources. UAI 2002: 111-118 | |
30 | Harald Steck, Tommi Jaakkola: Unsupervised Active Learning in Large Domains. UAI 2002: 469-476 | |
29 | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: A New Class of upper Bounds on the Log Partition Function. UAI 2002: 536-543 | |
28 | EE | Ziv Bar-Joseph, Erik D. Demaine, David K. Gifford, Angèle M. Hamel, Tommi Jaakkola, Nathan Srebro: K-ary Clustering with Optimal Leaf Ordering for Gene Expression Data. WABI 2002: 506-520 |
27 | EE | Alexander J. Hartemink, David K. Gifford, Tommi Jaakkola, Richard A. Young: Bayesian Methods for Elucidating Genetic Regulatory Networks. IEEE Intelligent Systems 17(2): 37-43 (2002) |
2001 | ||
26 | Ziv Bar-Joseph, David K. Gifford, Tommi Jaakkola: Fast optimal leaf ordering for hierarchical clustering. ISMB (Supplement of Bioinformatics) 2001: 22-29 | |
25 | EE | Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: Tree-based reparameterization for approximate inference on loopy graphs. NIPS 2001: 1001-1008 |
24 | EE | Tommi Jaakkola, Hava T. Siegelmann: Active Information Retrieval. NIPS 2001: 777-784 |
23 | EE | Martin Szummer, Tommi Jaakkola: Partially labeled classification with Markov random walks. NIPS 2001: 945-952 |
22 | EE | Alexander J. Hartemink, David K. Gifford, Tommi Jaakkola, Richard A. Young: Using Graphical Models and Genomic Expression Data to Statistically Validate Models of Genetic Regulatory Networks. Pacific Symposium on Biocomputing 2001: 422-433 |
2000 | ||
21 | Brendan J. Frey, Relu Patrascu, Tommi Jaakkola, Jodi Moran: Sequentially Fitting ``Inclusive'' Trees for Inference in Noisy-OR Networks. NIPS 2000: 493-499 | |
20 | Martin Szummer, Tommi Jaakkola: Kernel Expansions with Unlabeled Examples. NIPS 2000: 626-632 | |
19 | EE | Tony Jebara, Tommi Jaakkola: Feature Selection and Dualities in Maximum Entropy Discrimination. UAI 2000: 291-300 |
18 | EE | Marina Meila, Tommi Jaakkola: Tractable Bayesian Learning of Tree Belief Networks. UAI 2000: 380-388 |
17 | Tommi Jaakkola, Mark Diekhans, David Haussler: A Discriminative Framework for Detecting Remote Protein Homologies. Journal of Computational Biology 7(1-2): 95-114 (2000) | |
16 | Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, Csaba Szepesvári: Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms. Machine Learning 38(3): 287-308 (2000) | |
1999 | ||
15 | Tommi Jaakkola, Mark Diekhans, David Haussler: Using the Fisher Kernel Method to Detect Remote Protein Homologies. ISMB 1999: 149-158 | |
14 | EE | Tommi Jaakkola, Marina Meila, Tony Jebara: Maximum Entropy Discrimination. NIPS 1999: 470-476 |
13 | EE | Tommi Jaakkola, Michael I. Jordan: Variational Probabilistic Inference and the QMR-DT Network. J. Artif. Intell. Res. (JAIR) 10: 291-322 (1999) |
12 | Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, Lawrence K. Saul: An Introduction to Variational Methods for Graphical Models. Machine Learning 37(2): 183-233 (1999) | |
1998 | ||
11 | EE | Tommi Jaakkola, David Haussler: Exploiting Generative Models in Discriminative Classifiers. NIPS 1998: 487-493 |
1997 | ||
10 | Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, Michael I. Jordan: Approximating Posterior Distributions in Belief Networks Using Mixtures. NIPS 1997 | |
1996 | ||
9 | EE | Tommi Jaakkola, Michael I. Jordan: Recursive Algorithms for Approximating Probabilities in Graphical Models. NIPS 1996: 487-493 |
8 | EE | Tommi Jaakkola, Michael I. Jordan: Computing upper and lower bounds on likelihoods in intractable networks. UAI 1996: 340-348 |
7 | EE | Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan: Mean Field Theory for Sigmoid Belief Networks CoRR cs.AI/9603102: (1996) |
6 | Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan: Mean Field Theory for Sigmoid Belief Networks. J. Artif. Intell. Res. (JAIR) 4: 61-76 (1996) | |
1995 | ||
5 | EE | Tommi Jaakkola, Lawrence K. Saul, Michael I. Jordan: Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks. NIPS 1995: 528-534 |
1994 | ||
4 | Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan: Learning Without State-Estimation in Partially Observable Markovian Decision Processes. ICML 1994: 284-292 | |
3 | EE | Tommi Jaakkola, Satinder P. Singh, Michael I. Jordan: Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. NIPS 1994: 345-352 |
2 | EE | Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan: Reinforcement Learning with Soft State Aggregation. NIPS 1994: 361-368 |
1993 | ||
1 | EE | Tommi Jaakkola, Michael I. Jordan, Satinder P. Singh: Convergence of Stochastic Iterative Dynamic Programming Algorithms. NIPS 1993: 703-710 |