2008 |
39 | EE | Pei Gao,
Antti Honkela,
Magnus Rattray,
Neil D. Lawrence:
Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities.
ECCB 2008: 70-75 |
38 | EE | Raquel Urtasun,
David J. Fleet,
Andreas Geiger,
Jovan Popovic,
Trevor Darrell,
Neil D. Lawrence:
Topologically-constrained latent variable models.
ICML 2008: 1080-1087 |
37 | EE | Carl Henrik Ek,
Jonathan Rihan,
Philip H. S. Torr,
Grégory Rogez,
Neil D. Lawrence:
Ambiguity Modeling in Latent Spaces.
MLMI 2008: 62-73 |
36 | EE | Michalis Titsias,
Neil D. Lawrence,
Magnus Rattray:
Efficient Sampling for Gaussian Process Inference using Control Variables.
NIPS 2008: 1681-1688 |
35 | EE | Ben Calderhead,
Mark Girolami,
Neil D. Lawrence:
Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes.
NIPS 2008: 217-224 |
34 | EE | Mauricio Alvarez,
Neil D. Lawrence:
Sparse Convolved Gaussian Processes for Multi-output Regression.
NIPS 2008: 57-64 |
2007 |
33 | EE | Luka Eciolaza,
M. Alkarouri,
Neil D. Lawrence,
Visakan Kadirkamanathan,
Peter J. Fleming:
Gaussian Process Latent Variable Models for Fault Detection.
CIDM 2007: 287-292 |
32 | EE | Neil D. Lawrence,
Andrew J. Moore:
Hierarchical Gaussian process latent variable models.
ICML 2007: 481-488 |
31 | EE | Brian Ferris,
Dieter Fox,
Neil D. Lawrence:
WiFi-SLAM Using Gaussian Process Latent Variable Models.
IJCAI 2007: 2480-2485 |
30 | EE | Carl Henrik Ek,
Philip H. S. Torr,
Neil D. Lawrence:
Gaussian Process Latent Variable Models for Human Pose Estimation.
MLMI 2007: 132-143 |
29 | EE | Raquel Urtasun,
David J. Fleet,
Neil D. Lawrence:
Modeling Human Locomotion with Topologically Constrained Latent Variable Models.
Workshop on Human Motion 2007: 104-118 |
2006 |
28 | EE | Guido Sanguinetti,
Magnus Rattray,
Neil D. Lawrence:
Identifying Submodules of Cellular Regulatory Networks.
CMSB 2006: 155-168 |
27 | EE | Nathaniel J. King,
Neil D. Lawrence:
Fast Variational Inference for Gaussian Process Models Through KL-Correction.
ECML 2006: 270-281 |
26 | EE | Guido Sanguinetti,
Neil D. Lawrence:
Missing Data in Kernel PCA.
ECML 2006: 751-758 |
25 | EE | Neil D. Lawrence,
Joaquin Quiñonero Candela:
Local distance preservation in the GP-LVM through back constraints.
ICML 2006: 513-520 |
24 | EE | Neil D. Lawrence,
Guido Sanguinetti,
Magnus Rattray:
Modelling transcriptional regulation using Gaussian Processes.
NIPS 2006: 785-792 |
23 | EE | Guido Sanguinetti,
Magnus Rattray,
Neil D. Lawrence:
A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription.
Bioinformatics 22(14): 1753-1759 (2006) |
22 | EE | Xuejun Liu,
Marta Milo,
Neil D. Lawrence,
Magnus Rattray:
Probe-level measurement error improves accuracy in detecting differential gene expression.
Bioinformatics 22(17): 2107-2113 (2006) |
21 | EE | Guido Sanguinetti,
Neil D. Lawrence,
Magnus Rattray:
Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities.
Bioinformatics 22(22): 2775-2781 (2006) |
20 | EE | Magnus Rattray,
Xuejun Liu,
Guido Sanguinetti,
Marta Milo,
Neil D. Lawrence:
Propagating uncertainty in microarray data analysis.
Briefings in Bioinformatics 7(1): 37-47 (2006) |
19 | EE | Tonatiuh Peña Centeno,
Neil D. Lawrence:
Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis.
Journal of Machine Learning Research 7: 455-491 (2006) |
2005 |
18 | | Joab Winkler,
Mahesan Niranjan,
Neil D. Lawrence:
Deterministic and Statistical Methods in Machine Learning, First International Workshop, Sheffield, UK, September 7-10, 2004, Revised Lectures
Springer 2005 |
17 | EE | Xuejun Liu,
Marta Milo,
Neil D. Lawrence,
Magnus Rattray:
A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips.
Bioinformatics 21(18): 3637-3644 (2005) |
16 | EE | Guido Sanguinetti,
Marta Milo,
Magnus Rattray,
Neil D. Lawrence:
Accounting for probe-level noise in principal component analysis of microarray data.
Bioinformatics 21(19): 3748-3754 (2005) |
15 | EE | Neil D. Lawrence:
Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models.
Journal of Machine Learning Research 6: 1783-1816 (2005) |
14 | EE | Michael E. Tipping,
Neil D. Lawrence:
Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis.
Neurocomputing 69(1-3): 123-141 (2005) |
2004 |
13 | EE | Neil D. Lawrence,
John C. Platt,
Michael I. Jordan:
Extensions of the Informative Vector Machine.
Deterministic and Statistical Methods in Machine Learning 2004: 56-87 |
12 | EE | Neil D. Lawrence,
John C. Platt:
Learning to learn with the informative vector machine.
ICML 2004 |
11 | EE | Neil D. Lawrence,
Michael I. Jordan:
Semi-supervised Learning via Gaussian Processes.
NIPS 2004 |
10 | EE | Neil D. Lawrence,
Marta Milo,
Mahesan Niranjan,
Penny Rashbass,
Stephan Soullier:
Reducing the variability in cDNA microarray image processing by Bayesian inference.
Bioinformatics 20(4): (2004) |
2003 |
9 | EE | Jaco Vermaak,
Neil D. Lawrence,
Patrick Pérez:
Variational Inference for Visual Tracking.
CVPR (1) 2003: 773-780 |
8 | EE | Neil D. Lawrence:
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data.
NIPS 2003 |
2002 |
7 | EE | Neil D. Lawrence,
Matthias Seeger,
Ralf Herbrich:
Fast Sparse Gaussian Process Methods: The Informative Vector Machine.
NIPS 2002: 609-616 |
2001 |
6 | EE | Antony I. T. Rowstron,
Neil D. Lawrence,
Christopher M. Bishop:
Probabilistic Modelling of Replica Divergence.
HotOS 2001: 55-60 |
5 | | Neil D. Lawrence,
Bernhard Schölkopf:
Estimating a Kernel Fisher Discriminant in the Presence of Label Noise.
ICML 2001: 306-313 |
4 | EE | Neil D. Lawrence,
Antony I. T. Rowstron,
Christopher M. Bishop,
M. J. Taylor:
Optimising Synchronisation Times for Mobile Devices.
NIPS 2001: 1401-1408 |
3 | EE | Boaz Lerner,
Neil D. Lawrence:
A Comparison of State-of-the-Art Classification Techniques with Application to Cytogenetics.
Neural Computing and Applications 10(1): 39-47 (2001) |
1998 |
2 | EE | Neil D. Lawrence,
Christopher M. Bishop,
Michael I. Jordan:
Mixture Representations for Inference and Learning in Boltzmann Machines.
UAI 1998: 320-327 |
1997 |
1 | | Christopher M. Bishop,
Neil D. Lawrence,
Tommi Jaakkola,
Michael I. Jordan:
Approximating Posterior Distributions in Belief Networks Using Mixtures.
NIPS 1997 |