2009 |
28 | EE | Smita Sadhu,
Shovan Bhaumik,
Arnaud Doucet,
T. K. Ghoshal:
Particle-method-based formulation of risk-sensitive filter.
Signal Processing 89(3): 314-319 (2009) |
2008 |
27 | EE | Francois Caron,
Arnaud Doucet:
Sparse Bayesian nonparametric regression.
ICML 2008: 88-95 |
26 | EE | Ajay Jasra,
Arnaud Doucet,
David A. Stephens,
Christopher C. Holmes:
Interacting sequential Monte Carlo samplers for trans-dimensional simulation.
Computational Statistics & Data Analysis 52(4): 1765-1791 (2008) |
25 | EE | Francois Caron,
Manuel Davy,
Arnaud Doucet,
Emmanuel Duflos,
Philippe Vanheeghe:
Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures.
IEEE Transactions on Signal Processing 56(1): 71-84 (2008) |
24 | EE | Adam M. Johansen,
Arnaud Doucet,
Manuel Davy:
Particle methods for maximum likelihood estimation in latent variable models.
Statistics and Computing 18(1): 47-57 (2008) |
2007 |
23 | EE | Matthew Hoffman,
Arnaud Doucet,
Nando de Freitas,
Ajay Jasra:
Bayesian Policy Learning with Trans-Dimensional MCMC.
NIPS 2007 |
22 | EE | Ruben Martinez-Cantin,
Nando de Freitas,
Arnaud Doucet,
José A. Castellanos:
Active Policy Learning for Robot Planning and Exploration under Uncertainty.
Robotics: Science and Systems 2007 |
21 | EE | Sumeetpal S. Singh,
Nikolaos Kantas,
Ba-Ngu Vo,
Arnaud Doucet,
Robin J. Evans:
Simulation-based optimal sensor scheduling with application to observer trajectory planning.
Automatica 43(5): 817-830 (2007) |
20 | EE | Sumeetpal S. Singh,
Vladislav B. Tadic,
Arnaud Doucet:
A policy gradient method for semi-Markov decision processes with application to call admission control.
European Journal of Operational Research 178(3): 808-818 (2007) |
19 | EE | Simon I. Hill,
Arnaud Doucet:
A Framework for Kernel-Based Multi-Category Classification.
J. Artif. Intell. Res. (JAIR) 30: 525-564 (2007) |
2006 |
18 | EE | Mike Klaas,
Mark Briers,
Nando de Freitas,
Arnaud Doucet,
Simon Maskell,
Dustin Lang:
Fast particle smoothing: if I had a million particles.
ICML 2006: 481-488 |
2005 |
17 | EE | Simon I. Hill,
Arnaud Doucet:
Adapting two-class support vector classification methods to many class problems.
ICML 2005: 313-320 |
16 | EE | Mike Klaas,
Nando de Freitas,
Arnaud Doucet:
Toward Practical N2 Monte Carlo: the Marginal Particle Filter.
UAI 2005: 308-315 |
2003 |
15 | EE | Jaco Vermaak,
Arnaud Doucet,
Patrick Pérez:
Maintaining Multi-Modality through Mixture Tracking.
ICCV 2003: 1110-1116 |
14 | EE | Jaco Vermaak,
Simon J. Godsill,
Arnaud Doucet:
Sequential Bayesian Kernel Regression.
NIPS 2003 |
13 | | Christophe Andrieu,
Nando de Freitas,
Arnaud Doucet,
Michael I. Jordan:
An Introduction to MCMC for Machine Learning.
Machine Learning 50(1-2): 5-43 (2003) |
2002 |
12 | EE | Sumetpal Singh,
Vladislav Tadic,
Arnaud Doucet:
A policy gradient method for SMDPs with application to call admission control.
ICARCV 2002: 1268-1274 |
11 | | Shien-Shin Tham,
Arnaud Doucet,
Kotagiri Ramamohanarao:
Sparse Bayesian Learning for Regression and Classification using Markov Chain Monte Carlo.
ICML 2002: 634-641 |
10 | EE | Arnaud Doucet,
Simon J. Godsill,
Christian P. Robert:
Marginal maximum a posteriori estimation using Markov chain Monte Carlo.
Statistics and Computing 12(1): 77-84 (2002) |
2001 |
9 | EE | Christophe Andrieu,
Nando de Freitas,
Arnaud Doucet:
Rao-Blackwellised Particle Filtering via Data Augmentation.
NIPS 2001: 561-567 |
8 | EE | Christophe Andrieu,
Nando de Freitas,
Arnaud Doucet:
Robust Full Bayesian Learning for Radial Basis Networks.
Neural Computation 13(10): 2359-2407 (2001) |
2000 |
7 | | Rudolph van der Merwe,
Arnaud Doucet,
Nando de Freitas,
Eric A. Wan:
The Unscented Particle Filter.
NIPS 2000: 584-590 |
6 | EE | Christophe Andrieu,
Nando de Freitas,
Arnaud Doucet:
Reversible Jump MCMC Simulated Annealing for Neural Networks.
UAI 2000: 11-18 |
5 | EE | Arnaud Doucet,
Nando de Freitas,
Kevin P. Murphy,
Stuart J. Russell:
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks.
UAI 2000: 176-183 |
4 | | Christophe Andrieu,
Arnaud Doucet:
Simulated annealing for maximum a Posteriori parameter estimation of hidden Markov models.
IEEE Transactions on Information Theory 46(3): 994-1004 (2000) |
3 | | João F. G. de Freitas,
Mahesan Niranjan,
Andrew H. Gee,
Arnaud Doucet:
Sequential Monte Carlo Methods to Train Neural Network Models.
Neural Computation 12(4): 955-993 (2000) |
1999 |
2 | EE | Christophe Andrieu,
João F. G. de Freitas,
Arnaud Doucet:
Robust Full Bayesian Methods for Neural Networks.
NIPS 1999: 379-385 |
1998 |
1 | EE | João F. G. de Freitas,
Mahesan Niranjan,
Arnaud Doucet,
Andrew H. Gee:
Global Optimisation of Neural Network Models via Sequential Sampling.
NIPS 1998: 410-416 |