dblp.uni-trier.dewww.uni-trier.de

Arnaud Doucet

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2009
28EESmita Sadhu, Shovan Bhaumik, Arnaud Doucet, T. K. Ghoshal: Particle-method-based formulation of risk-sensitive filter. Signal Processing 89(3): 314-319 (2009)
2008
27EEFrancois Caron, Arnaud Doucet: Sparse Bayesian nonparametric regression. ICML 2008: 88-95
26EEAjay Jasra, Arnaud Doucet, David A. Stephens, Christopher C. Holmes: Interacting sequential Monte Carlo samplers for trans-dimensional simulation. Computational Statistics & Data Analysis 52(4): 1765-1791 (2008)
25EEFrancois Caron, Manuel Davy, Arnaud Doucet, Emmanuel Duflos, Philippe Vanheeghe: Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures. IEEE Transactions on Signal Processing 56(1): 71-84 (2008)
24EEAdam M. Johansen, Arnaud Doucet, Manuel Davy: Particle methods for maximum likelihood estimation in latent variable models. Statistics and Computing 18(1): 47-57 (2008)
2007
23EEMatthew Hoffman, Arnaud Doucet, Nando de Freitas, Ajay Jasra: Bayesian Policy Learning with Trans-Dimensional MCMC. NIPS 2007
22EERuben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, José A. Castellanos: Active Policy Learning for Robot Planning and Exploration under Uncertainty. Robotics: Science and Systems 2007
21EESumeetpal S. Singh, Nikolaos Kantas, Ba-Ngu Vo, Arnaud Doucet, Robin J. Evans: Simulation-based optimal sensor scheduling with application to observer trajectory planning. Automatica 43(5): 817-830 (2007)
20EESumeetpal S. Singh, Vladislav B. Tadic, Arnaud Doucet: A policy gradient method for semi-Markov decision processes with application to call admission control. European Journal of Operational Research 178(3): 808-818 (2007)
19EESimon I. Hill, Arnaud Doucet: A Framework for Kernel-Based Multi-Category Classification. J. Artif. Intell. Res. (JAIR) 30: 525-564 (2007)
2006
18EEMike Klaas, Mark Briers, Nando de Freitas, Arnaud Doucet, Simon Maskell, Dustin Lang: Fast particle smoothing: if I had a million particles. ICML 2006: 481-488
2005
17EESimon I. Hill, Arnaud Doucet: Adapting two-class support vector classification methods to many class problems. ICML 2005: 313-320
16EEMike Klaas, Nando de Freitas, Arnaud Doucet: Toward Practical N2 Monte Carlo: the Marginal Particle Filter. UAI 2005: 308-315
2003
15EEJaco Vermaak, Arnaud Doucet, Patrick Pérez: Maintaining Multi-Modality through Mixture Tracking. ICCV 2003: 1110-1116
14EEJaco Vermaak, Simon J. Godsill, Arnaud Doucet: Sequential Bayesian Kernel Regression. NIPS 2003
13 Christophe Andrieu, Nando de Freitas, Arnaud Doucet, Michael I. Jordan: An Introduction to MCMC for Machine Learning. Machine Learning 50(1-2): 5-43 (2003)
2002
12EESumetpal Singh, Vladislav Tadic, Arnaud Doucet: A policy gradient method for SMDPs with application to call admission control. ICARCV 2002: 1268-1274
11 Shien-Shin Tham, Arnaud Doucet, Kotagiri Ramamohanarao: Sparse Bayesian Learning for Regression and Classification using Markov Chain Monte Carlo. ICML 2002: 634-641
10EEArnaud Doucet, Simon J. Godsill, Christian P. Robert: Marginal maximum a posteriori estimation using Markov chain Monte Carlo. Statistics and Computing 12(1): 77-84 (2002)
2001
9EEChristophe Andrieu, Nando de Freitas, Arnaud Doucet: Rao-Blackwellised Particle Filtering via Data Augmentation. NIPS 2001: 561-567
8EEChristophe Andrieu, Nando de Freitas, Arnaud Doucet: Robust Full Bayesian Learning for Radial Basis Networks. Neural Computation 13(10): 2359-2407 (2001)
2000
7 Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, Eric A. Wan: The Unscented Particle Filter. NIPS 2000: 584-590
6EEChristophe Andrieu, Nando de Freitas, Arnaud Doucet: Reversible Jump MCMC Simulated Annealing for Neural Networks. UAI 2000: 11-18
5EEArnaud Doucet, Nando de Freitas, Kevin P. Murphy, Stuart J. Russell: Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. UAI 2000: 176-183
4 Christophe Andrieu, Arnaud Doucet: Simulated annealing for maximum a Posteriori parameter estimation of hidden Markov models. IEEE Transactions on Information Theory 46(3): 994-1004 (2000)
3 João F. G. de Freitas, Mahesan Niranjan, Andrew H. Gee, Arnaud Doucet: Sequential Monte Carlo Methods to Train Neural Network Models. Neural Computation 12(4): 955-993 (2000)
1999
2EEChristophe Andrieu, João F. G. de Freitas, Arnaud Doucet: Robust Full Bayesian Methods for Neural Networks. NIPS 1999: 379-385
1998
1EEJoão F. G. de Freitas, Mahesan Niranjan, Arnaud Doucet, Andrew H. Gee: Global Optimisation of Neural Network Models via Sequential Sampling. NIPS 1998: 410-416

Coauthor Index

1Christophe Andrieu [2] [4] [6] [8] [9] [13]
2Shovan Bhaumik [28]
3Mark Briers [18]
4Francois Caron [25] [27]
5José A. Castellanos [22]
6Manuel Davy [24] [25]
7Emmanuel Duflos [25]
8Robin J. Evans [21]
9João F. G. de Freitas [1] [2] [3]
10Nando de Freitas [5] [6] [7] [8] [9] [13] [16] [18] [22] [23]
11Andrew H. Gee [1] [3]
12T. K. Ghoshal [28]
13Simon J. Godsill [10] [14]
14Simon I. Hill [17] [19]
15Matthew Hoffman [23]
16Christopher C. Holmes [26]
17Ajay Jasra [23] [26]
18Adam M. Johansen [24]
19Michael I. Jordan [13]
20Nikolaos Kantas [21]
21Mike Klaas [16] [18]
22Dustin Lang [18]
23Ruben Martinez-Cantin [22]
24Simon Maskell [18]
25Rudolph van der Merwe [7]
26Kevin P. Murphy [5]
27Mahesan Niranjan [1] [3]
28Patrick Pérez [15]
29Kotagiri Ramamohanarao [11]
30Christian P. Robert [10]
31Stuart J. Russell [5]
32Smita Sadhu [28]
33Sumeetpal S. Singh [20] [21]
34Sumetpal Singh [12]
35David A. Stephens [26]
36Vladislav Tadic [12]
37Vladislav B. Tadic [20]
38Shien-Shin Tham [11]
39Philippe Vanheeghe [25]
40Jaco Vermaak [14] [15]
41Ba-Ngu Vo [21]
42Eric A. Wan [7]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)