2009 |
105 | EE | Andriy Mnih,
Zhang Yuecheng,
Geoffrey E. Hinton:
Improving a statistical language model through non-linear prediction.
Neurocomputing 72(7-9): 1414-1418 (2009) |
2008 |
104 | EE | Zhang Yuecheng,
Andriy Mnih,
Geoffrey E. Hinton:
Improving a statistical language model by modulating the effects of context words.
ESANN 2008: 493-498 |
103 | EE | Vinod Nair,
Josh Susskind,
Geoffrey E. Hinton:
Analysis-by-Synthesis by Learning to Invert Generative Black Boxes.
ICANN (1) 2008: 971-981 |
102 | EE | Andriy Mnih,
Geoffrey E. Hinton:
A Scalable Hierarchical Distributed Language Model.
NIPS 2008: 1081-1088 |
101 | EE | Vinod Nair,
Geoffrey E. Hinton:
Implicit Mixtures of Restricted Boltzmann Machines.
NIPS 2008: 1145-1152 |
100 | EE | Tanya Schmah,
Geoffrey E. Hinton,
Richard Zemel,
Steven L. Small,
Stephen C. Strother:
Generative versus discriminative training of RBMs for classification of fMRI images.
NIPS 2008: 1409-1416 |
99 | EE | Ilya Sutskever,
Geoffrey E. Hinton:
Using matrices to model symbolic relationship.
NIPS 2008: 1593-1600 |
98 | EE | Ilya Sutskever,
Geoffrey E. Hinton,
Graham W. Taylor:
The Recurrent Temporal Restricted Boltzmann Machine.
NIPS 2008: 1601-1608 |
97 | EE | Ilya Sutskever,
Geoffrey E. Hinton:
Deep, Narrow Sigmoid Belief Networks Are Universal Approximators.
Neural Computation 20(11): 2629-2636 (2008) |
2007 |
96 | EE | Roland Memisevic,
Geoffrey E. Hinton:
Unsupervised Learning of Image Transformations.
CVPR 2007 |
95 | EE | Andriy Mnih,
Geoffrey E. Hinton:
Three new graphical models for statistical language modelling.
ICML 2007: 641-648 |
94 | EE | Ruslan Salakhutdinov,
Andriy Mnih,
Geoffrey E. Hinton:
Restricted Boltzmann machines for collaborative filtering.
ICML 2007: 791-798 |
93 | EE | Simon Osindero,
Geoffrey E. Hinton:
Modeling image patches with a directed hierarchy of Markov random fields.
NIPS 2007 |
92 | EE | Ruslan Salakhutdinov,
Geoffrey E. Hinton:
Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes.
NIPS 2007 |
91 | EE | Geoffrey E. Hinton:
Boltzmann machine.
Scholarpedia 2(5): 1668 (2007) |
2006 |
90 | EE | Graham W. Taylor,
Geoffrey E. Hinton,
Sam T. Roweis:
Modeling Human Motion Using Binary Latent Variables.
NIPS 2006: 1345-1352 |
89 | EE | Simon Osindero,
Max Welling,
Geoffrey E. Hinton:
Topographic Product Models Applied to Natural Scene Statistics.
Neural Computation 18(2): 381-414 (2006) |
88 | EE | Geoffrey E. Hinton,
Simon Osindero,
Yee Whye Teh:
A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation 18(7): 1527-1554 (2006) |
2005 |
87 | EE | Geoffrey E. Hinton:
What kind of graphical model is the brain?
IJCAI 2005: 1765- |
86 | EE | Geoffrey E. Hinton,
Vinod Nair:
Inferring Motor Programs from Images of Handwritten Digits.
NIPS 2005 |
85 | EE | Roland Memisevic,
Geoffrey E. Hinton:
Improving dimensionality reduction with spectral gradient descent.
Neural Networks 18(5-6): 702-710 (2005) |
2004 |
84 | EE | Max Welling,
Michal Rosen-Zvi,
Geoffrey E. Hinton:
Exponential Family Harmoniums with an Application to Information Retrieval.
NIPS 2004 |
83 | EE | Roland Memisevic,
Geoffrey E. Hinton:
Multiple Relational Embedding.
NIPS 2004 |
82 | EE | Jacob Goldberger,
Sam T. Roweis,
Geoffrey E. Hinton,
Ruslan Salakhutdinov:
Neighbourhood Components Analysis.
NIPS 2004 |
81 | EE | Brian Sallans,
Geoffrey E. Hinton:
Reinforcement Learning with Factored States and Actions.
Journal of Machine Learning Research 5: 1063-1088 (2004) |
2003 |
80 | EE | Geoffrey E. Hinton,
Max Welling,
Andriy Mnih:
Wormholes Improve Contrastive Divergence.
NIPS 2003 |
79 | | Max Welling,
Richard S. Zemel,
Geoffrey E. Hinton:
Efficient Parametric Projection Pursuit Density Estimation.
UAI 2003: 575-582 |
78 | EE | Yee Whye Teh,
Max Welling,
Simon Osindero,
Geoffrey E. Hinton:
Energy-Based Models for Sparse Overcomplete Representations.
Journal of Machine Learning Research 4: 1235-1260 (2003) |
2002 |
77 | EE | Sageev Oore,
Demetri Terzopoulos,
Geoffrey E. Hinton:
A Desktop Input Device and Interface for Interactive 3D Character Animation.
Graphics Interface 2002: 133-140 |
76 | EE | Max Welling,
Geoffrey E. Hinton:
A New Learning Algorithm for Mean Field Boltzmann Machines.
ICANN 2002: 351-357 |
75 | EE | Max Welling,
Geoffrey E. Hinton,
Simon Osindero:
Learning Sparse Topographic Representations with Products of Student-t Distributions.
NIPS 2002: 1359-1366 |
74 | EE | Max Welling,
Richard S. Zemel,
Geoffrey E. Hinton:
Self Supervised Boosting.
NIPS 2002: 665-672 |
73 | EE | Geoffrey E. Hinton,
Sam T. Roweis:
Stochastic Neighbor Embedding.
NIPS 2002: 833-840 |
72 | | Fiora Pirri,
Geoffrey E. Hinton,
Hector J. Levesque:
In Memory of Ray Reiter (1939-2002).
AI Magazine 23(4): 93 (2002) |
71 | EE | Sageev Oore,
Demetri Terzopoulos,
Geoffrey E. Hinton:
Local Physical Models for Interactive Character Animation.
Comput. Graph. Forum 21(3): (2002) |
70 | EE | Guy Mayraz,
Geoffrey E. Hinton:
Recognizing Handwritten Digits Using Hierarchical Products of Experts.
IEEE Trans. Pattern Anal. Mach. Intell. 24(2): 189-197 (2002) |
69 | EE | Geoffrey E. Hinton:
Training Products of Experts by Minimizing Contrastive Divergence.
Neural Computation 14(8): 1771-1800 (2002) |
2001 |
68 | EE | Andrew D. Brown,
Geoffrey E. Hinton:
Relative Density Nets: A New Way to Combine Backpropagation with HMM's.
NIPS 2001: 1149-1156 |
67 | EE | Alberto Paccanaro,
Geoffrey E. Hinton:
Learning Hierarchical Structures with Linear Relational Embedding.
NIPS 2001: 857-864 |
66 | EE | Sam T. Roweis,
Lawrence K. Saul,
Geoffrey E. Hinton:
Global Coordination of Local Linear Models.
NIPS 2001: 889-896 |
65 | EE | Geoffrey E. Hinton,
Yee Whye Teh:
Discovering Multiple Constraints that are Frequently Approximately Satisfied.
UAI 2001: 227-234 |
64 | EE | Alberto Paccanaro,
Geoffrey E. Hinton:
Learning Distributed Representations of Concepts Using Linear Relational Embedding.
IEEE Trans. Knowl. Data Eng. 13(2): 232-244 (2001) |
2000 |
63 | | Geoffrey E. Hinton:
Modeling High-Dimensional Data by Combining Simple Experts.
AAAI/IAAI 2000: 1159-1164 |
62 | | Alberto Paccanaro,
Geoffrey E. Hinton:
Learning Distributed Representations by Mapping Concepts and Relations into a Linear Space.
ICML 2000: 711-718 |
61 | EE | Alberto Paccanaro,
Geoffrey E. Hinton:
Extracting Distributed Representations of Concepts and Relations from Positive and Negative Propositions.
IJCNN (2) 2000: 259-264 |
60 | | Brian Sallans,
Geoffrey E. Hinton:
Using Free Energies to Represent Q-values in a Multiagent Reinforcement Learning Task.
NIPS 2000: 1075-1081 |
59 | | Yee Whye Teh,
Geoffrey E. Hinton:
Rate-coded Restricted Boltzmann Machines for Face Recognition.
NIPS 2000: 908-914 |
58 | | Guy Mayraz,
Geoffrey E. Hinton:
Recognizing Hand-written Digits Using Hierarchical Products of Experts.
NIPS 2000: 953-959 |
57 | | Zoubin Ghahramani,
Geoffrey E. Hinton:
Variational Learning for Switching State-Space Models.
Neural Computation 12(4): 831-864 (2000) |
56 | | Naonori Ueda,
Ryohei Nakano,
Zoubin Ghahramani,
Geoffrey E. Hinton:
SMEM Algorithm for Mixture Models.
Neural Computation 12(9): 2109-2128 (2000) |
55 | EE | Naonori Ueda,
Ryohei Nakano,
Zoubin Ghahramani,
Geoffrey E. Hinton:
Split and Merge EM Algorithm for Improving Gaussian Mixture Density Estimates.
VLSI Signal Processing 26(1-2): 133-140 (2000) |
1999 |
54 | EE | Geoffrey E. Hinton,
Andrew D. Brown:
Spiking Boltzmann Machines.
NIPS 1999: 122-128 |
53 | EE | Geoffrey E. Hinton,
Zoubin Ghahramani,
Yee Whye Teh:
Learning to Parse Images.
NIPS 1999: 463-469 |
52 | | Brendan J. Frey,
Geoffrey E. Hinton:
Variational Learning in Nonlinear Gaussian Belief Networks.
Neural Computation 11(1): 193-213 (1999) |
1998 |
51 | EE | Naonori Ueda,
Ryohei Nakano,
Zoubin Ghahramani,
Geoffrey E. Hinton:
SMEM Algorithm for Mixture Models.
NIPS 1998: 599-605 |
50 | EE | Radek Grzeszczuk,
Demetri Terzopoulos,
Geoffrey E. Hinton:
Fast Neural Network Emulation of Dynamical Systems for Computer Animation.
NIPS 1998: 882-888 |
49 | EE | Radek Grzeszczuk,
Demetri Terzopoulos,
Geoffrey E. Hinton:
NeuroAnimator: Fast Neural Network Emulation and Control of Physics-based Models.
SIGGRAPH 1998: 9-20 |
48 | EE | S. Sidney Fels,
Geoffrey E. Hinton:
Glove-TalkII-a neural-network interface which maps gestures to parallel formant speech synthesizer controls.
IEEE Transactions on Neural Networks 9(1): 205-212 (1998) |
1997 |
47 | | Zoubin Ghahramani,
Geoffrey E. Hinton:
Hierarchical Non-linear Factor Analysis and Topographic Maps.
NIPS 1997 |
46 | | Brendan J. Frey,
Geoffrey E. Hinton:
Efficient Stochastic Source Coding and an Application to a Bayesian Network Source Model.
Comput. J. 40(2/3): 157-165 (1997) |
45 | EE | Christopher K. I. Williams,
Michael Revow,
Geoffrey E. Hinton:
Instantiating Deformable Models with a Neural Net.
Computer Vision and Image Understanding 68(1): 120-126 (1997) |
44 | EE | Peter Dayan,
Geoffrey E. Hinton:
Using Expectation-Maximization for Reinforcement Learning.
Neural Computation 9(2): 271-278 (1997) |
43 | EE | Sageev Oore,
Geoffrey E. Hinton,
Gregory Dudek:
A Mobile Robot that Learns its Place.
Neural Computation 9(3): 683-699 (1997) |
1996 |
42 | | Brendan J. Frey,
Geoffrey E. Hinton:
Free Energy Coding.
Data Compression Conference 1996: 73-81 |
41 | EE | Michael Revow,
Christopher K. I. Williams,
Geoffrey E. Hinton:
Using Generative Models for Handwritten Digit Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 18(6): 592-606 (1996) |
40 | EE | Peter Dayan,
Geoffrey E. Hinton:
Varieties of Helmholtz Machine.
Neural Networks 9(8): 1385-1403 (1996) |
1995 |
39 | | Sidney Fels,
Geoffrey E. Hinton:
GloveTalkII: An Adaptive Gesture-to-Formant Interface.
CHI 1995: 456-463 |
38 | EE | Geoffrey E. Hinton,
Michael Revow:
Using Pairs of Data-Points to Define Splits for Decision Trees.
NIPS 1995: 507-513 |
37 | EE | Brendan J. Frey,
Geoffrey E. Hinton,
Peter Dayan:
Does the Wake-sleep Algorithm Produce Good Density Estimators?
NIPS 1995: 661-667 |
36 | EE | Peter Dayan,
Geoffrey E. Hinton,
Radford M. Neal,
Richard S. Zemel:
The Helmholtz machine.
Neural Computation 7(5): 889-904 (1995) |
1994 |
35 | EE | Geoffrey E. Hinton,
Michael Revow,
Peter Dayan:
Recognizing Handwritten Digits Using Mixtures of Linear Models.
NIPS 1994: 1015-1022 |
34 | EE | Lei Xu,
Michael I. Jordan,
Geoffrey E. Hinton:
An Alternative Model for Mixtures of Experts.
NIPS 1994: 633-640 |
33 | EE | Sidney Fels,
Geoffrey E. Hinton:
Glove-TalkII: Mapping Hand Gestures to Speech Using Neural Networks.
NIPS 1994: 843-850 |
32 | EE | Christopher K. I. Williams,
Michael Revow,
Geoffrey E. Hinton:
Using a neural net to instantiate a deformable model.
NIPS 1994: 965-972 |
1993 |
31 | EE | Geoffrey E. Hinton,
Drew van Camp:
Keeping the Neural Networks Simple by Minimizing the Description Length of the Weights.
COLT 1993: 5-13 |
30 | EE | Richard S. Zemel,
Geoffrey E. Hinton:
Developing Population Codes by Minimizing Description Length.
NIPS 1993: 11-18 |
29 | EE | Geoffrey E. Hinton,
Richard S. Zemel:
Autoencoders, Minimum Description Length and Helmholtz Free Energy.
NIPS 1993: 3-10 |
1992 |
28 | EE | Peter Dayan,
Geoffrey E. Hinton:
Feudal Reinforcement Learning.
NIPS 1992: 271-278 |
1991 |
27 | EE | Suzanna Becker,
Geoffrey E. Hinton:
Learning to Make Coherent Predictions in Domains with Discontinuities.
NIPS 1991: 372-379 |
26 | EE | Geoffrey E. Hinton,
Christopher K. I. Williams,
Michael Revow:
Adaptive Elastic Models for Hand-Printed Character Recognition.
NIPS 1991: 512-519 |
25 | EE | Steven J. Nowlan,
Geoffrey E. Hinton:
Adaptive Soft Weight Tying using Gaussian Mixtures.
NIPS 1991: 993-1000 |
1990 |
24 | | Sidney Fels,
Geoffrey E. Hinton:
Building adaptive interfaces with neural networks: The glove-talk pilot study.
INTERACT 1990: 683-688 |
23 | EE | Richard S. Zemel,
Geoffrey E. Hinton:
Discovering Viewpoint-Invariant Relationships That Characterize Objects.
NIPS 1990: 299-305 |
22 | EE | Steven J. Nowlan,
Geoffrey E. Hinton:
Evaluation of Adaptive Mixtures of Competing Experts.
NIPS 1990: 774-780 |
21 | | Geoffrey E. Hinton:
Connectionist Symbol Processing - Preface.
Artif. Intell. 46(1-2): 1-4 (1990) |
20 | | Geoffrey E. Hinton:
Mapping Part-Whole Hierarchies into Connectionist Networks.
Artif. Intell. 46(1-2): 47-75 (1990) |
19 | EE | Kevin J. Lang,
Alex Waibel,
Geoffrey E. Hinton:
A time-delay neural network architecture for isolated word recognition.
Neural Networks 3(1): 23-43 (1990) |
1989 |
18 | EE | Kevin J. Lang,
Geoffrey E. Hinton:
Dimensionality Reduction and Prior Knowledge in E-Set Recognition.
NIPS 1989: 178-185 |
17 | EE | Richard S. Zemel,
Michael Mozer,
Geoffrey E. Hinton:
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations.
NIPS 1989: 266-273 |
16 | EE | Conrad C. Galland,
Geoffrey E. Hinton:
Discovering High Order Features with Mean Field Modules.
NIPS 1989: 509-515 |
15 | | Geoffrey E. Hinton:
Connectionist Learning Procedures.
Artif. Intell. 40(1-3): 185-234 (1989) |
1988 |
14 | EE | Yann LeCun,
Conrad C. Galland,
Geoffrey E. Hinton:
GEMINI: Gradient Estimation Through Matrix Inversion After Noise Injection.
NIPS 1988: 141-148 |
13 | | David S. Touretzky,
Geoffrey E. Hinton:
A Distributed Connectionist Production System.
Cognitive Science 12(3): 423-466 (1988) |
1987 |
12 | EE | Geoffrey E. Hinton,
James L. McClelland:
Learning Representations by Recirculation.
NIPS 1987: 358-366 |
11 | | Geoffrey E. Hinton:
Learning Translation Invariant Recognition in Massively Parallel Networks.
PARLE (1) 1987: 1-13 |
10 | | Scott E. Fahlman,
Geoffrey E. Hinton:
Connectionist Architectures for Artificial Intelligence.
IEEE Computer 20(1): 100-109 (1987) |
1986 |
9 | | Drew V. McDermott,
Geoffrey E. Hinton:
Learning in Massively Parallel Nets (Panel).
AAAI 1986: 1149 |
1985 |
8 | | David S. Touretzky,
Geoffrey E. Hinton:
Symbols Among the Neurons: Details of a Connectionist Inference Architecture.
IJCAI 1985: 238-243 |
7 | | Geoffrey E. Hinton,
Kevin J. Lang:
Shape Recognition and Illusory Conjunctions.
IJCAI 1985: 252-259 |
6 | | David H. Ackley,
Geoffrey E. Hinton,
Terrence J. Sejnowski:
A Learning Algorithm for Boltzmann Machines.
Cognitive Science 9(1): 147-169 (1985) |
1983 |
5 | | Scott E. Fahlman,
Geoffrey E. Hinton,
Terrence J. Sejnowski:
Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines.
AAAI 1983: 109-113 |
1981 |
4 | | Geoffrey E. Hinton:
Shape Representation in Parallel Systems.
IJCAI 1981: 1088-1096 |
3 | | Geoffrey E. Hinton:
A Parallel Computation that Assigns Canonical Object-Based Frames of Reference.
IJCAI 1981: 683-685 |
1978 |
2 | | Aaron Sloman,
David Owen,
Geoffrey E. Hinton,
Frank Birch,
Frank O'Gorman:
Representation and Control in Vision.
AISB/GI (ECAI) 1978: 309-314 |
1976 |
1 | | Geoffrey E. Hinton:
Using Relaxation to find a Puppet.
AISB (ECAI) 1976: 148-157 |