dblp.uni-trier.dewww.uni-trier.de

Satinder P. Singh

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2008
91EEBritton Wolfe, Michael R. James, Satinder P. Singh: Approximate predictive state representations. AAMAS (1) 2008: 363-370
90EEDavid Wingate, Satinder P. Singh: Efficiently learning linear-linear exponential family predictive representations of state. ICML 2008: 1176-1183
2007
89 Vishal Soni, Satinder P. Singh: Abstraction in Predictive State Representations. AAAI 2007: 639-644
88EEDavid Wingate, Satinder P. Singh: On discovery and learning of models with predictive representations of state for agents with continuous actions and observations. AAMAS 2007: 187
87EEVishal Soni, Satinder P. Singh, Michael P. Wellman: Constraint satisfaction algorithms for graphical games. AAMAS 2007: 67
86EEDavid Wingate, Vishal Soni, Britton Wolfe, Satinder P. Singh: Relational Knowledge with Predictive State Representations. IJCAI 2007: 2035-2040
85EEYevgeniy Vorobeychik, Michael P. Wellman, Satinder P. Singh: Learning payoff functions in infinite games. Machine Learning 67(1-2): 145-168 (2007)
2006
84 David Wingate, Satinder P. Singh: Mixtures of Predictive Linear Gaussian Models for Nonlinear, Stochastic Dynamical Systems. AAAI 2006
83 Vishal Soni, Satinder P. Singh: Using Homomorphisms to Transfer Options across Continuous Reinforcement Learning Domains. AAAI 2006
82EEDavid Wingate, Satinder P. Singh: Kernel Predictive Linear Gaussian models for nonlinear stochastic dynamical systems. ICML 2006: 1017-1024
81EEBritton Wolfe, Satinder P. Singh: Predictive state representations with options. ICML 2006: 1025-1032
80EEMatthew R. Rudary, Satinder P. Singh: Predictive linear-Gaussian models of controlled stochastic dynamical systems. ICML 2006: 777-784
79EERuggiero Cavallo, David C. Parkes, Satinder P. Singh: Optimal Coordinated Planning Amongst Self-Interested Agents with Private State. UAI 2006
78EECharles Lee Isbell Jr., Michael J. Kearns, Satinder P. Singh, Christian R. Shelton, Peter Stone, David P. Kormann: Cobot in LambdaMOO: An Adaptive Social Statistics Agent. Autonomous Agents and Multi-Agent Systems 13(3): 327-354 (2006)
2005
77 Michael R. James, Satinder P. Singh: Planning in Models that Combine Memory with Predictive Representations of State. AAAI 2005: 987-992
76EEBritton Wolfe, Michael R. James, Satinder P. Singh: Learning predictive state representations in dynamical systems without reset. ICML 2005: 980-987
75EEMichael R. James, Britton Wolfe, Satinder P. Singh: Combining Memory and Landmarks with Predictive State Representations. IJCAI 2005: 734-739
74EEYevgeniy Vorobeychik, Michael P. Wellman, Satinder P. Singh: Learning Payoff Functions in Infinite Games. IJCAI 2005: 977-982
73EEDoina Precup, Richard S. Sutton, Cosmin Paduraru, Anna Koop, Satinder P. Singh: Off-policy Learning with Options and Recognizers. NIPS 2005
72EEMatthew R. Rudary, Satinder P. Singh, David Wingate: Predictive Linear-Gaussian Models of Stochastic Dynamical Systems. UAI 2005: 501-508
71 Nicholas L. Cassimatis, Sean Luke, Simon D. Levy, Ross Gayler, Pentti Kanerva, Chris Eliasmith, Timothy W. Bickmore, Alan C. Schultz, Randall Davis, James A. Landay, Robert C. Miller, Eric Saund, Thomas F. Stahovich, Michael L. Littman, Satinder P. Singh, Shlomo Argamon, Shlomo Dubnov: Reports on the 2004 AAAI Fall Symposia. AI Magazine 26(1): 98-102 (2005)
2004
70EESatinder P. Singh, Vishal Soni, Michael P. Wellman: Computing approximate bayes-nash equilibria in tree-games of incomplete information. ACM Conference on Electronic Commerce 2004: 81-90
69EEJoshua Estelle, Yevgeniy Vorobeychik, Michael P. Wellman, Satinder P. Singh, Christopher Kiekintveld, Vishal Soni: Strategic Interactions in the TAC 2003 Supply Chain Tournament. Computers and Games 2004: 316-331
68 Christopher Kiekintveld, Michael P. Wellman, Satinder P. Singh, Joshua Estelle, Yevgeniy Vorobeychik, Vishal Soni, Matthew R. Rudary: Distributed Feedback Control for Decision Making on Supply Chains. ICAPS 2004: 384-392
67EEMatthew R. Rudary, Satinder P. Singh, Martha E. Pollack: Adaptive cognitive orthotics: combining reinforcement learning and constraint-based temporal reasoning. ICML 2004
66EEMichael R. James, Satinder P. Singh: Learning and discovery of predictive state representations in dynamical systems with reset. ICML 2004
65EEDavid C. Parkes, Satinder P. Singh, Dimah Yanovsky: Approximately Efficient Online Mechanism Design. NIPS 2004
64EESatinder P. Singh, Andrew G. Barto, Nuttapong Chentanez: Intrinsically Motivated Reinforcement Learning. NIPS 2004
63EESatinder P. Singh, Michael R. James, Matthew R. Rudary: Predictive State Representations: A New Theory for Modeling Dynamical Systems. UAI 2004: 512-518
62EEChristopher Kiekintveld, Michael P. Wellman, Satinder P. Singh, Vishal Soni: Value-driven procurement in the TAC supply chain game. SIGecom Exchanges 4(3): 9-18 (2004)
2003
61 Satinder P. Singh, Michael L. Littman, Nicholas K. Jong, David Pardoe, Peter Stone: Learning Predictive State Representations. ICML 2003: 712-719
60EEMatthew R. Rudary, Satinder P. Singh: A Nonlinear Predictive State Representation. NIPS 2003
59EEDavid C. Parkes, Satinder P. Singh: An MDP-Based Approach to Online Mechanism Design. NIPS 2003
2002
58 Michael J. Kearns, Charles Lee Isbell Jr., Satinder P. Singh, Diane J. Litman, Jessica Howe: CobotDS: A Spoken Dialogue System for Chat. AAAI/IAAI 2002: 425-430
57EESatinder P. Singh, Diane J. Litman, Michael J. Kearns, Marilyn A. Walker: Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. J. Artif. Intell. Res. (JAIR) 16: 105-133 (2002)
56 Satinder P. Singh: Introduction. Machine Learning 49(2-3): 107-109 (2002)
55 Michael J. Kearns, Satinder P. Singh: Near-Optimal Reinforcement Learning in Polynomial Time. Machine Learning 49(2-3): 209-232 (2002)
2001
54EEPeter Stone, Michael L. Littman, Satinder P. Singh, Michael J. Kearns: ATTac-2000: an adaptive autonomous bidding agent. Agents 2001: 238-245
53EECharles Lee Isbell Jr., Christian R. Shelton, Michael J. Kearns, Satinder P. Singh, Peter Stone: A social reinforcement learning agent. Agents 2001: 377-384
52EECharles Lee Isbell Jr., Christian R. Shelton, Michael J. Kearns, Satinder P. Singh, Peter Stone: Cobot: A Social Reinforcement Learning Agent. NIPS 2001: 1393-1400
51EEMichael L. Littman, Richard S. Sutton, Satinder P. Singh: Predictive Representations of State. NIPS 2001: 1555-1561
50EEMichael L. Littman, Michael J. Kearns, Satinder P. Singh: An Efficient, Exact Algorithm for Solving Tree-Structured Graphical Games. NIPS 2001: 817-823
49EEMichael J. Kearns, Michael L. Littman, Satinder P. Singh: Graphical Models for Game Theory. UAI 2001: 253-260
48EEJános A. Csirik, Michael L. Littman, Satinder P. Singh, Peter Stone: FAucS : An FCC Spectrum Auction Simulator for Autonomous Bidding Agents. WELCOM 2001: 139-151
47EEPeter Stone, Michael L. Littman, Satinder P. Singh, Michael J. Kearns: ATTac-2000: An Adaptive Autonomous Bidding Agent. J. Artif. Intell. Res. (JAIR) 15: 189-206 (2001)
2000
46 Charles Lee Isbell Jr., Michael J. Kearns, David P. Kormann, Satinder P. Singh, Peter Stone: Cobot in LambdaMOO: A Social Statistics Agent. AAAI/IAAI 2000: 36-41
45 Satinder P. Singh, Michael J. Kearns, Diane J. Litman, Marilyn A. Walker: Empirical Evaluation of a Reinforcement Learning Spoken Dialogue System. AAAI/IAAI 2000: 645-651
44EEDiane J. Litman, Michael S. Kearns, Satinder P. Singh, Marilyn A. Walker: Automatic Optimization of Dialogue Management. COLING 2000: 502-508
43 Michael J. Kearns, Satinder P. Singh: Bias-Variance Error Bounds for Temporal Difference Updates. COLT 2000: 142-147
42 Kary Myers, Michael J. Kearns, Satinder P. Singh, Marilyn A. Walker: A Boosting Approach to Topic Spotting on Subdialogues. ICML 2000: 655-662
41 Doina Precup, Richard S. Sutton, Satinder P. Singh: Eligibility Traces for Off-Policy Policy Evaluation. ICML 2000: 759-766
40EEPeter Stone, Richard S. Sutton, Satinder P. Singh: Reinforcement Learning for 3 vs. 2 Keepaway RoboCup 2000: 249-258
39EEMichael J. Kearns, Yishay Mansour, Satinder P. Singh: Fast Planning in Stochastic Games. UAI 2000: 309-316
38EESatinder P. Singh, Michael J. Kearns, Yishay Mansour: Nash Convergence of Gradient Dynamics in General-Sum Games. UAI 2000: 541-548
37 Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, Csaba Szepesvári: Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms. Machine Learning 38(3): 287-308 (2000)
1999
36EERichard S. Sutton, David A. McAllester, Satinder P. Singh, Yishay Mansour: Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999: 1057-1063
35EESatinder P. Singh, Michael J. Kearns, Diane J. Litman, Marilyn A. Walker: Reinforcement Learning for Spoken Dialogue Systems. NIPS 1999: 956-962
34EEYishay Mansour, Satinder P. Singh: On the Complexity of Policy Iteration. UAI 1999: 401-408
33EEDavid A. McAllester, Satinder P. Singh: Approximate Planning for Factored POMDPs using Belief State Simplification. UAI 1999: 409-416
32EERichard S. Sutton, Doina Precup, Satinder P. Singh: Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning. Artif. Intell. 112(1-2): 181-211 (1999)
1998
31 Doina Precup, Richard S. Sutton, Satinder P. Singh: Theoretical Results on Reinforcement Learning with Temporally Abstract Options. ECML 1998: 382-393
30 Michael J. Kearns, Satinder P. Singh: Near-Optimal Reinforcement Learning in Polynominal Time. ICML 1998: 260-268
29 John Loch, Satinder P. Singh: Using Eligibility Traces to Find the Best Memoryless Policy in Partially Observable Markov Decision Processes. ICML 1998: 323-331
28 Richard S. Sutton, Doina Precup, Satinder P. Singh: Intra-Option Learning about Temporally Abstract Actions. ICML 1998: 556-564
27EERichard S. Sutton, Satinder P. Singh, Doina Precup, Balaraman Ravindran: Improved Switching among Temporally Abstract Actions. NIPS 1998: 1066-1072
26EEJohn K. Williams, Satinder P. Singh: Experimental Results on Learning Stochastic Memoryless Policies for Partially Observable Markov Decision Processes. NIPS 1998: 1073-1080
25EETimothy X. Brown, Hui Tong, Satinder P. Singh: Optimizing Admission Control while Ensuring Quality of Service in Multimedia Networks via Reinforcement Learning. NIPS 1998: 982-988
24EEMichael J. Kearns, Satinder P. Singh: Finite-Sample Convergence Rates for Q-Learning and Indirect Algorithms. NIPS 1998: 996-1002
23 Satinder P. Singh, Peter Dayan: Analytical Mean Squared Error Curves for Temporal Difference Learning. Machine Learning 32(1): 5-40 (1998)
1997
22 Satinder P. Singh, David Cohn: How to Dynamically Merge Markov Decision Processes. NIPS 1997
1996
21EELawrence K. Saul, Satinder P. Singh: Learning Curve Bounds for a Markov Decision Process with Undiscounted Rewards. COLT 1996: 147-156
20EESatinder P. Singh, Peter Dayan: Analytical Mean Squared Error Curves in Temporal Difference Learning. NIPS 1996: 1054-1060
19EEDavid A. Cohn, Satinder P. Singh: Predicting Lifetimes in Dynamically Allocated Memory. NIPS 1996: 939-945
18EESatinder P. Singh, Dimitri P. Bertsekas: Reinforcement Learning for Dynamic Channel Allocation in Cellular Telephone Systems. NIPS 1996: 974-980
17 Satinder P. Singh, Richard S. Sutton: Reinforcement Learning with Replacing Eligibility Traces. Machine Learning 22(1-3): 123-158 (1996)
1995
16EELawrence K. Saul, Satinder P. Singh: Markov Decision Processes in Large State Spaces. COLT 1995: 281-288
15EEPeter Dayan, Satinder P. Singh: Improving Policies without Measuring Merits. NIPS 1995: 1059-1065
14EEAndrew G. Barto, Steven J. Bradtke, Satinder P. Singh: Learning to Act Using Real-Time Dynamic Programming. Artif. Intell. 72(1-2): 81-138 (1995)
1994
13 Satinder P. Singh: Reinforcement Learning Algorithms for Average-Payoff Markovian Decision Processes. AAAI 1994: 700-705
12 Satinder P. Singh, Tommi Jaakkola, Michael I. Jordan: Learning Without State-Estimation in Partially Observable Markovian Decision Processes. ICML 1994: 284-292
11EETommi Jaakkola, Satinder P. Singh, Michael I. Jordan: Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. NIPS 1994: 345-352
10EESatinder P. Singh, Tommi Jaakkola, Michael I. Jordan: Reinforcement Learning with Soft State Aggregation. NIPS 1994: 361-368
9 Satinder P. Singh, Richard C. Yee: An Upper Bound on the Loss from Approximate Optimal-Value Functions. Machine Learning 16(3): 227-233 (1994)
1993
8EESatinder P. Singh, Andrew G. Barto, Roderic A. Grupen, Christopher I. Connolly: Robust Reinforcement Learning in Motion Planning. NIPS 1993: 655-662
7EETommi Jaakkola, Michael I. Jordan, Satinder P. Singh: Convergence of Stochastic Iterative Dynamic Programming Algorithms. NIPS 1993: 703-710
1992
6 Satinder P. Singh: Reinforcement Learning with a Hierarchy of Abstract Models. AAAI 1992: 202-207
5 Satinder P. Singh: Scaling Reinforcement Learning Algorithms by Learning Variable Temporal Resolution Models. ML 1992: 406-415
4 Satinder P. Singh: Transfer of Learning by Composing Solutions of Elemental Sequential Tasks. Machine Learning 8: 323-339 (1992)
1991
3 Satinder P. Singh: Transfer of Learning Across Compositions of Sequentail Tasks. ML 1991: 348-352
2EESatinder P. Singh: The Efficient Learning of Multiple Task Sequences. NIPS 1991: 251-258
1EEN. E. Berthier, Satinder P. Singh, Andrew G. Barto, James C. Houk: A Cortico-Cerebellar Model that Learns to Generate Distributed Motor Commands to Control a Kinematic Arm. NIPS 1991: 611-618

Coauthor Index

1Shlomo Argamon (Shlomo Argamon-Engelson, Sean P. Engelson) [71]
2Andrew G. Barto [1] [8] [14] [64]
3N. E. Berthier [1]
4Dimitri P. Bertsekas [18]
5Timothy W. Bickmore [71]
6Steven J. Bradtke [14]
7Timothy X. Brown [25]
8Nicholas L. Cassimatis [71]
9Ruggiero Cavallo [79]
10Nuttapong Chentanez [64]
11David Cohn [22]
12David A. Cohn [19]
13Christopher I. Connolly [8]
14János A. Csirik [48]
15Randall Davis [71]
16Peter Dayan [15] [20] [23]
17Shlomo Dubnov [71]
18Chris Eliasmith [71]
19Joshua Estelle [68] [69]
20Ross Gayler [71]
21Roderic A. Grupen [8]
22James C. Houk [1]
23Jessica Howe [58]
24Charles Lee Isbell Jr. (Charles L. Isbell) [46] [52] [53] [58] [78]
25Tommi Jaakkola [7] [10] [11] [12] [37]
26Michael R. James [63] [66] [75] [76] [77] [91]
27Nicholas K. Jong [61]
28Michael I. Jordan [7] [10] [11] [12]
29Pentti Kanerva [71]
30Michael J. Kearns [24] [30] [35] [38] [39] [42] [43] [45] [46] [47] [49] [50] [52] [53] [54] [55] [57] [58] [78]
31Michael S. Kearns [44]
32Christopher Kiekintveld [62] [68] [69]
33Anna Koop [73]
34David P. Kormann [46] [78]
35James A. Landay [71]
36Simon D. Levy [71]
37Diane J. Litman [35] [44] [45] [57] [58]
38Michael L. Littman [37] [47] [48] [49] [50] [51] [54] [61] [71]
39John Loch [29]
40Sean Luke [71]
41Yishay Mansour [34] [36] [38] [39]
42David A. McAllester [33] [36]
43Rob Miller (Robert C. Miller) [71]
44Kary Myers [42]
45Cosmin Paduraru [73]
46David Pardoe [61]
47David C. Parkes [59] [65] [79]
48Martha E. Pollack [67]
49Doina Precup [27] [28] [31] [32] [41] [73]
50Balaraman Ravindran [27]
51Matthew R. Rudary [60] [63] [67] [68] [72] [80]
52Lawrence K. Saul [16] [21]
53Eric Saund [71]
54Alan C. Schultz [71]
55Christian R. Shelton [52] [53] [78]
56Vishal Soni [62] [68] [69] [70] [83] [86] [87] [89]
57Thomas F. Stahovich [71]
58Peter Stone [40] [46] [47] [48] [52] [53] [54] [61] [78]
59Richard S. Sutton [17] [27] [28] [31] [32] [36] [40] [41] [51] [73]
60Csaba Szepesvári [37]
61Hui Tong [25]
62Yevgeniy Vorobeychik [68] [69] [74] [85]
63Marilyn A. Walker [35] [42] [44] [45] [57]
64Michael P. Wellman [62] [68] [69] [70] [74] [85] [87]
65John K. Williams [26]
66David Wingate [72] [82] [84] [86] [88] [90]
67Britton Wolfe [75] [76] [81] [86] [91]
68Dimah Yanovsky [65]
69Richard C. Yee [9]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)