2008 |
50 | EE | Masoumeh T. Izadi,
Doina Precup:
Point-Based Planning for Predictive State Representations.
Canadian Conference on AI 2008: 126-137 |
49 | EE | Jordan Frank,
Shie Mannor,
Doina Precup:
Reinforcement learning in the presence of rare events.
ICML 2008: 336-343 |
48 | EE | Jonathan Taylor,
Doina Precup,
Prakash Panangaden:
Bounding Performance Loss in Approximate MDP Homomorphisms.
NIPS 2008: 1649-1656 |
47 | EE | Rupert Brooks,
Tal Arbel,
Doina Precup:
Anytime similarity measures for faster alignment.
Computer Vision and Image Understanding 110(3): 378-389 (2008) |
2007 |
46 | EE | Robin Jaulmes,
Joelle Pineau,
Doina Precup:
A formal framework for robot learning and control under model uncertainty.
ICRA 2007: 2104-2110 |
45 | EE | Rupert Brooks,
Tal Arbel,
Doina Precup:
Fast Image Alignment Using Anytime Algorithms.
IJCAI 2007: 2078-2083 |
44 | EE | Pablo Samuel Castro,
Doina Precup:
Using Linear Programming for Bayesian Exploration in Markov Decision Processes.
IJCAI 2007: 2437-2442 |
43 | EE | Marc G. Bellemare,
Doina Precup:
Context-Driven Predictions.
IJCAI 2007: 250-255 |
42 | EE | Robin Jaulmes,
Joelle Pineau,
Doina Precup:
Apprentissage actif dans les processus décisionnels de Markov partiellement observables L'algorithme MEDUSA.
Revue d'Intelligence Artificielle 21(1): 9-34 (2007) |
2006 |
41 | | Christopher Hundt,
Prakash Panangaden,
Joelle Pineau,
Doina Precup:
Representing Systems with Hidden State.
AAAI 2006 |
40 | EE | Masoumeh T. Izadi,
Doina Precup,
Danielle Azar:
Belief Selection in Point-Based Planning Algorithms for POMDPs.
Canadian Conference on AI 2006: 383-394 |
39 | EE | Ricard Gavaldà,
Philipp W. Keller,
Joelle Pineau,
Doina Precup:
PAC-Learning of Markov Models with Hidden State.
ECML 2006: 150-161 |
38 | EE | Philipp W. Keller,
Shie Mannor,
Doina Precup:
Automatic basis function construction for approximate dynamic programming and reinforcement learning.
ICML 2006: 449-456 |
37 | EE | Beibei Zou,
Xuesong Ma,
Bettina Kemme,
Glen Newton,
Doina Precup:
Data Mining Using Relational Database Management Systems.
PAKDD 2006: 657-667 |
36 | EE | Norm Ferns,
Pablo Samuel Castro,
Doina Precup,
Prakash Panangaden:
Methods for Computing State Similarity in Markov Decision Processes.
UAI 2006 |
2005 |
35 | EE | Masoumeh T. Izadi,
Doina Precup:
Using Rewards for Belief State Updates in Partially Observable Markov Decision Processes.
ECML 2005: 593-600 |
34 | EE | Robin Jaulmes,
Joelle Pineau,
Doina Precup:
Active Learning in Partially Observable Markov Decision Processes.
ECML 2005: 601-608 |
33 | EE | Masoumeh T. Izadi,
Doina Precup:
Model minimization by linear PSR.
IJCAI 2005: 1749-1750 |
32 | EE | Masoumeh T. Izadi,
Ajit V. Rajwade,
Doina Precup:
Using core beliefs for point-based value iteration.
IJCAI 2005: 1751-1753 |
31 | EE | Doina Precup,
Richard S. Sutton,
Cosmin Paduraru,
Anna Koop,
Satinder P. Singh:
Off-policy Learning with Options and Recognizers.
NIPS 2005 |
30 | EE | Alexandre Bouchard-Côté,
Norm Ferns,
Prakash Panangaden,
Doina Precup:
An approximation algorithm for labelled Markov processes: towards realistic approximation.
QEST 2005: 54-62 |
29 | EE | Norm Ferns,
Prakash Panangaden,
Doina Precup:
Metrics for Markov Decision Processes with Infinite State Spaces.
UAI 2005: 201-208 |
28 | | Ion Muslea,
Virginia Dignum,
Daniel D. Corkill,
Catholijn M. Jonker,
Frank Dignum,
Silvia Coradeschi,
Alessandro Saffiotti,
Dan Fu,
Jeff Orkin,
William Cheetham,
Kai Goebel,
Piero P. Bonissone,
Leen-Kiat Soh,
Randolph M. Jones,
Robert E. Wray III,
Matthias Scheutz,
Daniela Pucci de Farias,
Shie Mannor,
Georgios Theocharous,
Doina Precup,
Bamshad Mobasher,
Sarabjot S. Anand,
Bettina Berendt,
Andreas Hotho,
Hans W. Guesgen,
Michael T. Rosenstein,
Mohammad Ghavamzadeh:
The Workshop Program at the Nineteenth National Conference on Artificial Intelligence.
AI Magazine 26(1): 103-108 (2005) |
2004 |
27 | | Norm Ferns,
Prakash Panangaden,
Doina Precup:
Metrics for Finite Markov Decision Processes.
AAAI 2004: 950-951 |
26 | EE | Philipp W. Keller,
Felix-Olivier Duguay,
Doina Precup:
RedAgent-2003: An Autonomous Market-Based Supply-Chain Management Agent.
AAMAS 2004: 1182-1189 |
25 | EE | Bohdana Ratitch,
Doina Precup:
Sparse Distributed Memories for On-Line Value-Based Reinforcement Learning.
ECML 2004: 347-358 |
24 | EE | Norm Ferns,
Prakash Panangaden,
Doina Precup:
Metrics for Finite Markov Decision Processes.
UAI 2004: 162-169 |
23 | EE | Doina Precup,
Paul E. Utgoff:
Classification Using Phi-Machines and Constructive Function Approximation.
Machine Learning 55(1): 31-52 (2004) |
22 | EE | Philipp W. Keller,
Felix-Olivier Duguay,
Doina Precup:
Redagent: winner of TAC SCM 2003.
SIGecom Exchanges 4(3): 1-8 (2004) |
2003 |
21 | EE | Bohdana Ratitch,
Doina Precup:
Using MDP Characteristics to Guide Exploration in Reinforcement Learning.
ECML 2003: 313-324 |
20 | | François Rivest,
Doina Precup:
Combining TD-learning with Cascade-correlation Networks.
ICML 2003: 632-639 |
19 | | Masoumeh T. Izadi,
Doina Precup:
A Planning Algorithm for Predictive State Representations.
IJCAI 2003: 1520-1521 |
2002 |
18 | EE | Danielle Azar,
Doina Precup,
Salah Bouktif,
Balázs Kégl,
Houari A. Sahraoui:
Combining and Adapting Software Quality Predictive Models by Genetic Algorithms.
ASE 2002: 285-288 |
17 | EE | Bohdana Ratitch,
Doina Precup:
Characterizing Markov Decision Processes.
ECML 2002: 391-404 |
16 | EE | Theodore J. Perkins,
Doina Precup:
A Convergent Form of Approximate Policy Iteration.
NIPS 2002: 1595-1602 |
15 | EE | Martin Stolle,
Doina Precup:
Learning Options in Reinforcement Learning.
SARA 2002: 212-223 |
14 | EE | Ioan Alfred Letia,
Doina Precup:
Developing Collaborative Golog Agents by Reinforcement Learning.
International Journal on Artificial Intelligence Tools 11(2): 233-246 (2002) |
2001 |
13 | | Doina Precup,
Richard S. Sutton,
Sanjoy Dasgupta:
Off-Policy Temporal Difference Learning with Function Approximation.
ICML 2001: 417-424 |
12 | EE | Ioan Alfred Letia,
Doina Precup:
Developing Collaborative Golog Agents by Reinforcement Learning.
ICTAI 2001: 195-202 |
2000 |
11 | EE | Catherine C. McGeoch,
Peter Sanders,
Rudolf Fleischer,
Paul R. Cohen,
Doina Precup:
Using Finite Experiments to Study Asymptotic Performance.
Experimental Algorithmics 2000: 93-126 |
10 | | Doina Precup,
Richard S. Sutton,
Satinder P. Singh:
Eligibility Traces for Off-Policy Policy Evaluation.
ICML 2000: 759-766 |
1999 |
9 | EE | Richard S. Sutton,
Doina Precup,
Satinder P. Singh:
Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artif. Intell. 112(1-2): 181-211 (1999) |
1998 |
8 | | Doina Precup,
Richard S. Sutton,
Satinder P. Singh:
Theoretical Results on Reinforcement Learning with Temporally Abstract Options.
ECML 1998: 382-393 |
7 | | Doina Precup,
Paul E. Utgoff:
Classification Using Phi-Machines and Constructive Function Approximation.
ICML 1998: 439-444 |
6 | | Richard S. Sutton,
Doina Precup,
Satinder P. Singh:
Intra-Option Learning about Temporally Abstract Actions.
ICML 1998: 556-564 |
5 | EE | Richard S. Sutton,
Satinder P. Singh,
Doina Precup,
Balaraman Ravindran:
Improved Switching among Temporally Abstract Actions.
NIPS 1998: 1066-1072 |
1997 |
4 | | Doina Precup,
Richard S. Sutton:
Exponentiated Gradient Methods for Reinforcement Learning.
ICML 1997: 272-277 |
3 | EE | Catherine C. McGeoch,
Doina Precup,
Paul R. Cohen:
How to Find Big-Oh in Your Data Set (and How Not to).
IDA 1997: 41-52 |
2 | | J. Eliot B. Moss,
Paul E. Utgoff,
John Cavazos,
Doina Precup,
Darko Stefanovic,
Carla E. Brodley,
David Scheeff:
Learning to Schedule Straight-Line Code.
NIPS 1997 |
1 | | Doina Precup,
Richard S. Sutton:
Multi-time Models for Temporally Abstract Planning.
NIPS 1997 |