2008 | ||
---|---|---|
73 | EE | Debajyoti Ray, Brooks King-Casas, P. Read Montague, Peter Dayan: Bayesian Model of Behaviour in Economic Games. NIPS 2008: 1345-1352 |
72 | EE | Peter Dayan: Load and Attentional Bayes. NIPS 2008: 369-376 |
71 | EE | Quentin J. M. Huys, Joshua T. Vogelstein, Peter Dayan: Psychiatry: Insights into depression through normative decision-making models. NIPS 2008: 729-736 |
70 | EE | Rama Natarajan, Quentin J. M. Huys, Peter Dayan, Richard S. Zemel: Encoding and Decoding Spikes for Dynamic Stimuli. Neural Computation 20(9): 2325-2360 (2008) |
2007 | ||
69 | EE | Máté Lengyel, Peter Dayan: Hippocampal Contributions to Control: The Third Way. NIPS 2007 |
68 | EE | Quentin J. M. Huys, Richard S. Zemel, Rama Natarajan, Peter Dayan: Fast Population Coding. Neural Computation 19(2): 404-441 (2007) |
2006 | ||
67 | EE | Máté Lengyel, Peter Dayan: Uncertainty, phase and oscillatory hippocampal recall. NIPS 2006: 833-840 |
66 | EE | Aaron J. Gruber, Peter Dayan, Boris S. Gutkin, Sara A. Solla: Dopamine modulation in the basal ganglia locks the gate to working memory. Journal of Computational Neuroscience 20(2): 153-166 (2006) |
65 | EE | Peter Dayan: Images, Frames, and Connectionist Hierarchies. Neural Computation 18(10): 2293-2319 (2006) |
64 | EE | Odelia Schwartz, Terrence J. Sejnowski, Peter Dayan: Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics. Neural Computation 18(11): 2680-2718 (2006) |
63 | EE | Peter Dayan, Yael Niv, Ben Seymour, Nathaniel D. Daw: The misbehavior of value and the discipline of the will. Neural Networks 19(8): 1153-1160 (2006) |
62 | EE | Zhaoping Li, Peter Dayan: Pre-attentive visual selection. Neural Networks 19(9): 1437-1439 (2006) |
2005 | ||
61 | EE | Miguel Á. Carreira-Perpiñán, Peter Dayan, Geoffrey J. Goodhill: Differential Priors for Elastic Nets. IDEAL 2005: 335-342 |
60 | EE | Odelia Schwartz, Terrence J. Sejnowski, Peter Dayan: A Bayesian Framework for Tilt Perception and Confidence. NIPS 2005 |
59 | EE | Yael Niv, Nathaniel D. Daw, Peter Dayan: How fast to work: Response vigor, motivation and tonic dopamine. NIPS 2005 |
58 | EE | Peter Dayan, Angela J. Yu: Norepinephrine and Neural Interrupts. NIPS 2005 |
2004 | ||
57 | EE | Odelia Schwartz, Terrence J. Sejnowski, Peter Dayan: Assignment of Multiplicative Mixtures in Natural Images. NIPS 2004 |
56 | EE | Angela J. Yu, Peter Dayan: Inference, Attention, and Decision in a Bayesian Neural Architecture. NIPS 2004 |
55 | EE | Richard S. Zemel, Quentin J. M. Huys, Rama Natarajan, Peter Dayan: Probabilistic Computation in Spiking Populations. NIPS 2004 |
54 | EE | Máté Lengyel, Peter Dayan: Rate- and Phase-coded Autoassociative Memory. NIPS 2004 |
2003 | ||
53 | EE | Aaron J. Gruber, Peter Dayan, Boris S. Gutkin, Sara A. Solla: Dopamine Modulation in a Basal Ganglio-cortical Network Implements Saliency-based Gating of Working Memory. NIPS 2003 |
52 | EE | Peter Dayan, Michael Häusser: Plasticity Kernels and Temporal Statistics. NIPS 2003 |
51 | EE | Maneesh Sahani, Peter Dayan: Doubly Distributional Population Codes: Simultaneous Representation of Uncertainty and Multiplicity. Neural Computation 15(10): 2255-2279 (2003) |
2002 | ||
50 | EE | Angela J. Yu, Peter Dayan: Expected and Unexpected Uncertainty: ACh and NE in the Neocortex. NIPS 2002: 157-164 |
49 | EE | Szabolcs Káli, Peter Dayan: Replay, Repair and Consolidation. NIPS 2002: 19-26 |
48 | EE | Peter Dayan, Maneesh Sahani, Gregoire Deback: Adaptation and Unsupervised Learning. NIPS 2002: 221-228 |
47 | David J. Foster, Peter Dayan: Structure in the Space of Value Functions. Machine Learning 49(2-3): 325-346 (2002) | |
46 | EE | Kenji Doya, Peter Dayan, Michael E. Hasselmo: Introduction for 2002 Special Issue: Computational Models of Neuromodulation. Neural Networks 15(4-6): 475-477 (2002) |
45 | EE | Sham Kakade, Peter Dayan: Dopamine: generalization and bonuses. Neural Networks 15(4-6): 549-559 (2002) |
44 | EE | Nathaniel D. Daw, Sham Kakade, Peter Dayan: Opponent interactions between serotonin and dopamine. Neural Networks 15(4-6): 603-616 (2002) |
43 | EE | Angela J. Yu, Peter Dayan: Acetylcholine in cortical inference. Neural Networks 15(4-6): 719-730 (2002) |
2001 | ||
42 | EE | Peter Dayan: Motivated Reinforcement Learning. NIPS 2001: 11-18 |
41 | EE | Peter Dayan, Angela J. Yu: ACh, Uncertainty, and Cortical Inference. NIPS 2001: 189-196 |
40 | EE | Szabolcs Káli, Peter Dayan: A familiarity-based learning procedure for the establishment of place fields in area CA3 of the rat hippocampus. Neurocomputing 38-40: 691-695 (2001) |
2000 | ||
39 | Sham Kakade, Peter Dayan: Dopamine Bonuses. NIPS 2000: 131-137 | |
38 | Peter Dayan: Competition and Arbors in Ocular Dominance. NIPS 2000: 203-209 | |
37 | Szabolcs Káli, Peter Dayan: Hippocampally-Dependent Consolidation in a Hierarchical Model of Neocortex. NIPS 2000: 24-30 | |
36 | Zhaoping Li, Peter Dayan: Position Variance, Recurrence and Perceptual Learning. NIPS 2000: 31-37 | |
35 | Peter Dayan, Sham Kakade: Explaining Away in Weight Space. NIPS 2000: 451-457 | |
1999 | ||
34 | EE | Sham Kakade, Peter Dayan: Acquisition in Autoshaping. NIPS 1999: 24-30 |
33 | L. F. Abbott, Peter Dayan: The Effect of Correlated Variability on the Accuracy of a Population Code. Neural Computation 11(1): 91-101 (1999) | |
32 | Peter Dayan: Recurrent Sampling Models for the Helmholtz Machine. Neural Computation 11(3): 653-677 (1999) | |
1998 | ||
31 | EE | Richard S. Zemel, Peter Dayan: Distributional Population Codes and Multiple Motion Models. NIPS 1998: 174-182 |
30 | EE | Zhaoping Li, Peter Dayan: Computational Differences between Asymmetrical and Symmetrical Networks. NIPS 1998: 274-280 |
29 | EE | Friedrich T. Sommer, Peter Dayan: Bayesian retrieval in associative memories with storage errors. IEEE Transactions on Neural Networks 9(4): 705-713 (1998) |
28 | Satinder P. Singh, Peter Dayan: Analytical Mean Squared Error Curves for Temporal Difference Learning. Machine Learning 32(1): 5-40 (1998) | |
27 | Richard S. Zemel, Peter Dayan, Alexandre Pouget: Probabilistic Interpretation of Population Codes. Neural Computation 10(2): 403-430 (1998) | |
26 | Peter Dayan: A Hierarchical Model of Binocular Rivalry. Neural Computation 10(5): 1119-1135 (1998) | |
1997 | ||
25 | Richard S. Zemel, Peter Dayan: Combining Probabilistic Population Codes. IJCAI 1997: 1114-1119 | |
24 | David J. Foster, Richard G. M. Morris, Peter Dayan: Hippocampal Model of Rat Spatial Abilities Using Temporal Difference Learning. NIPS 1997 | |
23 | Peter Dayan, Theresa Long: Statistical Models of Conditioning. NIPS 1997 | |
22 | EE | Peter Dayan, Geoffrey E. Hinton: Using Expectation-Maximization for Reinforcement Learning. Neural Computation 9(2): 271-278 (1997) |
21 | EE | Radford M. Neal, Peter Dayan: Factor Analysis Using Delta-Rule Wake-Sleep Learning. Neural Computation 9(8): 1781-1803 (1997) |
1996 | ||
20 | EE | Satinder P. Singh, Peter Dayan: Analytical Mean Squared Error Curves in Temporal Difference Learning. NIPS 1996: 1054-1060 |
19 | EE | Maximilian Riesenhuber, Peter Dayan: Neural Models for Part-Whole Hierarchies. NIPS 1996: 17-26 |
18 | EE | Peter Dayan: A Hierarchical Model of Visual Rivalry. NIPS 1996: 48-54 |
17 | EE | Richard S. Zemel, Peter Dayan, Alexandre Pouget: Probabilistic Interpretation of Population Codes. NIPS 1996: 676-684 |
16 | Peter Dayan, Terrence J. Sejnowski: Exploration Bonuses and Dual Control. Machine Learning 25(1): 5-22 (1996) | |
15 | EE | Peter Dayan, Geoffrey E. Hinton: Varieties of Helmholtz Machine. Neural Networks 9(8): 1385-1403 (1996) |
1995 | ||
14 | EE | Terrence J. Sejnowski, Peter Dayan, P. Read Montague: Predictive Hebbian Learning. COLT 1995: 15-18 |
13 | EE | Peter Dayan, Satinder P. Singh: Improving Policies without Measuring Merits. NIPS 1995: 1059-1065 |
12 | EE | Brendan J. Frey, Geoffrey E. Hinton, Peter Dayan: Does the Wake-sleep Algorithm Produce Good Density Estimators? NIPS 1995: 661-667 |
11 | EE | Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel: The Helmholtz machine. Neural Computation 7(5): 889-904 (1995) |
1994 | ||
10 | EE | Geoffrey E. Hinton, Michael Revow, Peter Dayan: Recognizing Handwritten Digits Using Mixtures of Linear Models. NIPS 1994: 1015-1022 |
9 | Peter Dayan, Terrence J. Sejnowski: TD(lambda) Converges with Probability 1. Machine Learning 14(1): 295-301 (1994) | |
1993 | ||
8 | EE | P. Read Montague, Peter Dayan, Terrence J. Sejnowski: Foraging in an Uncertain Environment Using Predictive Hebbian Learning. NIPS 1993: 598-605 |
7 | EE | Nicol N. Schraudolph, Peter Dayan, Terrence J. Sejnowski: Temporal Difference Learning of Position Evaluation in the Game of Go. NIPS 1993: 817-824 |
1992 | ||
6 | EE | Peter Dayan, Geoffrey E. Hinton: Feudal Reinforcement Learning. NIPS 1992: 271-278 |
5 | EE | P. Read Montague, Peter Dayan, Steven J. Nowlan, Terrence J. Sejnowski: Using Aperiodic Reinforcement for Directed Self-Organization During Development. NIPS 1992: 969-976 |
4 | Christopher J. C. H. Watkins, Peter Dayan: Technical Note Q-Learning. Machine Learning 8: 279-292 (1992) | |
3 | Peter Dayan: The Convergence of TD(lambda) for General lambda. Machine Learning 8: 341-362 (1992) | |
1991 | ||
2 | EE | Peter Dayan, Geoffrey J. Goodhill: Perturbing Hebbian Rules. NIPS 1991: 19-26 |
1990 | ||
1 | EE | Peter Dayan: Navigating Through Temporal Difference. NIPS 1990: 464-470 |