2009 | ||
---|---|---|
137 | EE | Maria-Florina Balcan, Avrim Blum, Anupam Gupta: Approximate clustering without the approximation. SODA 2009: 1068-1077 |
136 | EE | Maria-Florina Balcan, Avrim Blum, Yishay Mansour: Improved equilibria via public service advertising. SODA 2009: 728-737 |
2008 | ||
135 | EE | Maria-Florina Balcan, Avrim Blum, Yishay Mansour: Item pricing for revenue maximization. ACM Conference on Electronic Commerce 2008: 50-59 |
134 | EE | Maria-Florina Balcan, Avrim Blum: Clustering with Interactive Feedback. ALT 2008: 316-328 |
133 | EE | Maria-Florina Balcan, Avrim Blum, Nathan Srebro: Improved Guarantees for Learning via Similarity Functions. COLT 2008: 287-298 |
132 | EE | Sharath R. Cholleti, Sally A. Goldman, Avrim Blum, David G. Politte, Steven Don: Veritas: Combining Expert Opinions without Labeled Data. ICTAI (1) 2008: 45-52 |
131 | EE | Avrim Blum, MohammadTaghi Hajiaghayi, Katrina Ligett, Aaron Roth: Regret minimization and the price of total anarchy. STOC 2008: 373-382 |
130 | EE | Avrim Blum, Katrina Ligett, Aaron Roth: A learning theory approach to non-interactive database privacy. STOC 2008: 609-618 |
129 | EE | Maria-Florina Balcan, Avrim Blum, Santosh Vempala: A discriminative framework for clustering via similarity functions. STOC 2008: 671-680 |
128 | EE | Maria-Florina Balcan, Avrim Blum, Jason D. Hartline, Yishay Mansour: Reducing mechanism design to algorithm design via machine learning. J. Comput. Syst. Sci. 74(8): 1245-1270 (2008) |
127 | EE | Maria-Florina Balcan, Avrim Blum, Nathan Srebro: A theory of learning with similarity functions. Machine Learning 72(1-2): 89-112 (2008) |
2007 | ||
126 | EE | David J. Abraham, Avrim Blum, Tuomas Sandholm: Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges. ACM Conference on Electronic Commerce 2007: 295-304 |
125 | EE | Avrim Blum: A Theory of Similarity Functions for Learning and Clustering. ALT 2007: 9 |
124 | EE | Avrim Blum, Maria-Florina Balcan: Open Problems in Efficient Semi-supervised PAC Learning. COLT 2007: 622-624 |
123 | EE | Avrim Blum: A Theory of Similarity Functions for Learning and Clustering. Discovery Science 2007: 39 |
122 | EE | Avrim Blum, Amin Coja-Oghlan, Alan M. Frieze, Shuheng Zhou: Separating Populations with Wide Data: A Spectral Analysis. ISAAC 2007: 439-451 |
121 | EE | Maria-Florina Balcan, Avrim Blum, T.-H. Hubert Chan, MohammadTaghi Hajiaghayi: A Theory of Loss-Leaders: Making Money by Pricing Below Cost. WINE 2007: 293-299 |
120 | EE | Avrim Blum, Gábor Lugosi, Hans-Ulrich Simon: Introduction to the special issue on COLT 2006. Machine Learning 69(2-3): 75-77 (2007) |
119 | EE | Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, Maria Minkoff: Approximation Algorithms for Orienteering and Discounted-Reward TSP. SIAM J. Comput. 37(2): 653-670 (2007) |
118 | EE | Maria-Florina Balcan, Avrim Blum: Mechanism design, machine learning, and pricing problems. SIGecom Exchanges 7(1): 34-36 (2007) |
117 | EE | Maria-Florina Balcan, Avrim Blum: Approximation Algorithms and Online Mechanisms for Item Pricing. Theory of Computing 3(1): 179-195 (2007) |
2006 | ||
116 | EE | Maria-Florina Balcan, Avrim Blum: Approximation algorithms and online mechanisms for item pricing. ACM Conference on Electronic Commerce 2006: 29-35 |
115 | EE | Maria-Florina Balcan, Avrim Blum: On a theory of learning with similarity functions. ICML 2006: 73-80 |
114 | EE | Avrim Blum, Eyal Even-Dar, Katrina Ligett: Routing without regret: on convergence to nash equilibria of regret-minimizing algorithms in routing games. PODC 2006: 45-52 |
113 | EE | Avrim Blum, Tuomas Sandholm, Martin Zinkevich: Online algorithms for market clearing. J. ACM 53(5): 845-879 (2006) |
112 | EE | Maria-Florina Balcan, Avrim Blum, Santosh Vempala: Kernels as features: On kernels, margins, and low-dimensional mappings. Machine Learning 65(1): 79-94 (2006) |
2005 | ||
111 | EE | Maria-Florina Balcan, Avrim Blum: A PAC-Style Model for Learning from Labeled and Unlabeled Data. COLT 2005: 111-126 |
110 | EE | Avrim Blum, Yishay Mansour: From External to Internal Regret. COLT 2005: 621-636 |
109 | EE | Maria-Florina Balcan, Avrim Blum, Jason D. Hartline, Yishay Mansour: Mechanism Design via Machine Learning. FOCS 2005: 605-614 |
108 | EE | Shobha Venkataraman, Dawn Xiaodong Song, Phillip B. Gibbons, Avrim Blum: New Streaming Algorithms for Fast Detection of Superspreaders. NDSS 2005 |
107 | EE | Avrim Blum, Cynthia Dwork, Frank McSherry, Kobbi Nissim: Practical privacy: the SuLQ framework. PODS 2005: 128-138 |
106 | EE | Avrim Blum: Random Projection, Margins, Kernels, and Feature-Selection. SLSFS 2005: 52-68 |
105 | EE | Avrim Blum, Jason D. Hartline: Near-optimal online auctions. SODA 2005: 1156-1163 |
104 | EE | Yossi Azar, Avrim Blum, David P. Bunde, Yishay Mansour: Combining Online Algorithms for Acceptance and Rejection. Theory of Computing 1(1): 105-117 (2005) |
2004 | ||
103 | EE | Maria-Florina Balcan, Avrim Blum, Santosh Vempala: On Kernels, Margins, and Low-Dimensional Mappings. ALT 2004: 194-205 |
102 | EE | H. Brendan McMahan, Avrim Blum: Online Geometric Optimization in the Bandit Setting Against an Adaptive Adversary. COLT 2004: 109-123 |
101 | EE | Avrim Blum, John D. Lafferty, Mugizi Robert Rwebangira, Rajashekar Reddy: Semi-supervised learning using randomized mincuts. ICML 2004 |
100 | EE | Maria-Florina Balcan, Avrim Blum, Ke Yang: Co-Training and Expansion: Towards Bridging Theory and Practice. NIPS 2004 |
99 | EE | Avrim Blum, Dawn Xiaodong Song, Shobha Venkataraman: Detection of Interactive Stepping Stones: Algorithms and Confidence Bounds. RAID 2004: 258-277 |
98 | EE | Nikhil Bansal, Avrim Blum, Shuchi Chawla, Adam Meyerson: Approximation algorithms for deadline-TSP and vehicle routing with time-windows. STOC 2004: 166-174 |
97 | EE | Avrim Blum, Jeffrey C. Jackson, Tuomas Sandholm, Martin Zinkevich: Preference Elicitation and Query Learning. Journal of Machine Learning Research 5: 649-667 (2004) |
96 | EE | Nikhil Bansal, Avrim Blum, Shuchi Chawla: Correlation Clustering. Machine Learning 56(1-3): 89-113 (2004) |
95 | EE | Avrim Blum, Vijay Kumar, Atri Rudra, Felix Wu: Online learning in online auctions. Theor. Comput. Sci. 324(2-3): 137-146 (2004) |
2003 | ||
94 | EE | Martin Zinkevich, Avrim Blum, Tuomas Sandholm: On polynomial-time preference elicitation with value queries. ACM Conference on Electronic Commerce 2003: 176-185 |
93 | EE | Avrim Blum, Jeffrey C. Jackson, Tuomas Sandholm, Martin Zinkevich: Preference Elicitation and Query Learning. COLT 2003: 13-25 |
92 | EE | Avrim Blum, John Langford: PAC-MDL Bounds. COLT 2003: 344-357 |
91 | EE | Avrim Blum: Learning a Function of r Relevant Variables. COLT 2003: 731-733 |
90 | EE | Nikhil Bansal, Avrim Blum, Shuchi Chawla, Kedar Dhamdhere: Scheduling for Flow-Time with Admission Control. ESA 2003: 43-54 |
89 | EE | Avrim Blum: Machine Learning: My Favorite Results, Directions, and Open Problems. FOCS 2003: 2- |
88 | EE | Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, Maria Minkoff: Approximation Algorithms for Orienteering and Discounted-Reward TSP. FOCS 2003: 46-55 |
87 | H. Brendan McMahan, Geoffrey J. Gordon, Avrim Blum: Planning in the Presence of Cost Functions Controlled by an Adversary. ICML 2003: 536-543 | |
86 | EE | Ke Yang, Avrim Blum: On Statistical Query Sampling and NMR Quantum Computing. IEEE Conference on Computational Complexity 2003: 194- |
85 | EE | Avrim Blum, Vijay Kumar, Atri Rudra, Felix Wu: Online learning in online auctions. SODA 2003: 202-204 |
84 | EE | Yossi Azar, Avrim Blum, Yishay Mansour: Combining online algorithms for rejection and acceptance. SPAA 2003: 159-163 |
83 | EE | Nikhil Bansal, Avrim Blum, Shuchi Chawla, Adam Meyerson: Online oblivious routing. SPAA 2003: 44-49 |
82 | EE | Avrim Blum, Shuchi Chawla, Adam Kalai: Static Optimality and Dynamic Search-Optimality in Lists and Trees. Algorithmica 36(3): 249-260 (2003) |
81 | EE | Avrim Blum, Ke Yang: On Statistical Query Sampling and NMR Quantum Computing Electronic Colloquium on Computational Complexity (ECCC) 10(014): (2003) |
80 | Avrim Blum, Adam Tauman Kalai, Jon M. Kleinberg: Admission Control to Minimize Rejections. Internet Mathematics 1(2): (2003) | |
79 | EE | Avrim Blum, Adam Kalai, Hal Wasserman: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4): 506-519 (2003) |
78 | EE | John Langford, Avrim Blum: Microchoice Bounds and Self Bounding Learning Algorithms. Machine Learning 51(2): 165-179 (2003) |
2002 | ||
77 | EE | Nikhil Bansal, Avrim Blum, Shuchi Chawla: Correlation Clustering. FOCS 2002: 238- |
76 | EE | Avrim Blum, Shuchi Chawla, Adam Kalai: Static optimality and dynamic search-optimality in lists and trees. SODA 2002: 1-8 |
75 | EE | Avrim Blum, John Dunagan: Smoothed analysis of the perceptron algorithm for linear programming. SODA 2002: 905-914 |
74 | EE | Avrim Blum, Tuomas Sandholm, Martin Zinkevich: Online algorithms for market clearing. SODA 2002: 971-980 |
2001 | ||
73 | Avrim Blum, Shuchi Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts. ICML 2001: 19-26 | |
72 | EE | Avrim Blum, Adam Kalai, Jon M. Kleinberg: Admission Control to Minimize Rejections. WADS 2001: 155-164 |
2000 | ||
71 | Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum: FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness. ICML 2000: 703-710 | |
70 | EE | Avrim Blum, Adam Kalai, Hal Wasserman: Noise-tolerant learning, the parity problem, and the statistical query model. STOC 2000: 435-440 |
69 | EE | Avrim Blum, Adam Kalai, Hal Wasserman: Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model CoRR cs.LG/0010022: (2000) |
68 | Avrim Blum, Carl Burch: On-line Learning and the Metrical Task System Problem. Machine Learning 39(1): 35-58 (2000) | |
67 | Avrim Blum, Prasad Chalasani: An Online Algorithm for Improving Performance in Navigation. SIAM J. Comput. 29(6): 1907-1938 (2000) | |
66 | EE | Avrim Blum, Howard J. Karloff, Yuval Rabani, Michael E. Saks: A Decomposition Theorem for Task Systems and Bounds for Randomized Server Problems. SIAM J. Comput. 30(5): 1624-1661 (2000) |
65 | EE | Avrim Blum, Goran Konjevod, R. Ravi, Santosh Vempala: Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. Theor. Comput. Sci. 235(1): 25-42 (2000) |
1999 | ||
64 | EE | Avrim Blum, Adam Kalai, John Langford: Beating the Hold-Out: Bounds for K-fold and Progressive Cross-Validation. COLT 1999: 203-208 |
63 | EE | John Langford, Avrim Blum: Microchoice Bounds and Self Bounding Learning Algorithms. COLT 1999: 209-214 |
62 | Avrim Blum, John Langford: Probabilistic Planning in the Graphplan Framework. ECP 1999: 319-332 | |
61 | EE | Avrim Blum, Carl Burch, Adam Kalai: Finely-Competitive Paging. FOCS 1999: 450-458 |
60 | Avrim Blum, R. Ravi, Santosh Vempala: A Constant-Factor Approximation Algorithm for the k-MST Problem. J. Comput. Syst. Sci. 58(1): 101-108 (1999) | |
59 | Avrim Blum, Adam Kalai: Universal Portfolios With and Without Transaction Costs. Machine Learning 35(3): 193-205 (1999) | |
1998 | ||
58 | EE | Avrim Blum, Tom M. Mitchell: Combining Labeled and Unlabeled Sata with Co-Training. COLT 1998: 92-100 |
57 | EE | Avrim Blum, Carl Burch, John Langford: On Learning Monotone Boolean Functions. FOCS 1998: 408-415 |
56 | EE | Avrim Blum, Goran Konjevod, R. Ravi, Santosh Vempala: Semi-Definite Relaxations for Minimum Bandwidth and other Vertex-Ordering Problems. STOC 1998: 100-105 |
55 | Avrim Blum, Alan M. Frieze, Ravi Kannan, Santosh Vempala: A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions. Algorithmica 22(1/2): 35-52 (1998) | |
54 | Avrim Blum, Prasad Chalasani, Sally A. Goldman, Donna K. Slonim: Learning with Unreliable Boundary Queries. J. Comput. Syst. Sci. 56(2): 209-222 (1998) | |
53 | Avrim Blum, Adam Kalai: A Note on Learning from Multiple-Instance Examples. Machine Learning 30(1): 23-29 (1998) | |
52 | EE | Howard Aizenstein, Avrim Blum, Roni Khardon, Eyal Kushilevitz, Leonard Pitt, Dan Roth: On Learning Read-k-Satisfy-j DNF. SIAM J. Comput. 27(6): 1515-1530 (1998) |
51 | Baruch Awerbuch, Yossi Azar, Avrim Blum, Santosh Vempala: New Approximation Guarantees for Minimum-Weight k-Trees and Prize-Collecting Salesmen. SIAM J. Comput. 28(1): 254-262 (1998) | |
50 | Joseph S. B. Mitchell, Avrim Blum, Prasad Chalasani, Santosh Vempala: A Constant-Factor Approximation Algorithm for the Geometric k-MST Problem in the Plane. SIAM J. Comput. 28(3): 771-781 (1998) | |
1997 | ||
49 | EE | Avrim Blum, Adam Kalai: Universal Portfolios With and Without Transaction Costs. COLT 1997: 309-313 |
48 | EE | Avrim Blum, Carl Burch: On-line Learning and the Metrical Task System Problem. COLT 1997: 45-53 |
47 | EE | Yair Bartal, Avrim Blum, Carl Burch, Andrew Tomkins: A polylog(n)-Competitive Algorithm for Metrical Task Systems. STOC 1997: 711-719 |
46 | EE | Avrim Blum, Merrick L. Furst: Fast Planning Through Planning Graph Analysis. Artif. Intell. 90(1-2): 281-300 (1997) |
45 | EE | Avrim Blum, Pat Langley: Selection of Relevant Features and Examples in Machine Learning. Artif. Intell. 97(1-2): 245-271 (1997) |
44 | EE | Avrim Blum, David R. Karger: An Õ(n^{3/14})-Coloring Algorithm for 3-Colorable Graphs. Inf. Process. Lett. 61(1): 49-53 (1997) |
43 | Avrim Blum, Ravindran Kannan: Learning an Intersection of a Constant Number of Halfspaces over a Uniform Distribution. J. Comput. Syst. Sci. 54(2): 371-380 (1997) | |
42 | Avrim Blum: Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain. Machine Learning 26(1): 5-23 (1997) | |
41 | Avrim Blum, Prabhakar Raghavan, Baruch Schieber: Navigating in Unfamiliar Geometric Terrain. SIAM J. Comput. 26(1): 110-137 (1997) | |
1996 | ||
40 | Avrim Blum, Alan M. Frieze, Ravi Kannan, Santosh Vempala: A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions. FOCS 1996: 330-338 | |
39 | Avrim Blum: On-line Algorithms in Machine Learning. Online Algorithms 1996: 306-325 | |
38 | Piotr Berman, Avrim Blum, Amos Fiat, Howard J. Karloff, Adi Rosén, Michael E. Saks: Randomized Robot Navigation Algorithms. SODA 1996: 75-84 | |
37 | EE | Avrim Blum, R. Ravi, Santosh Vempala: A Constant-factor Approximation Algorithm for the k MST Problem (Extended Abstract). STOC 1996: 442-448 |
1995 | ||
36 | EE | Avrim Blum, Prasad Chalasani, Sally A. Goldman, Donna K. Slonim: Learning with Unreliable Boundary Queries. COLT 1995: 98-107 |
35 | Avrim Blum: Empirical Support for Winnow and Weighted-Majority Based Algorithms: Results on a Calendar Scheduling Domain. ICML 1995: 64-72 | |
34 | Avrim Blum, Merrick L. Furst: Fast Planning Through Planning Graph Analysis. IJCAI 1995: 1636-1642 | |
33 | EE | Baruch Awerbuch, Yossi Azar, Avrim Blum, Santosh Vempala: Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. STOC 1995: 277-283 |
32 | EE | Avrim Blum, Prasad Chalasani, Santosh Vempala: A constant-factor approximation for the k-MST problem in the plane. STOC 1995: 294-302 |
31 | Avrim Blum, Joel Spencer: Coloring Random and Semi-Random k-Colorable Graphs. J. Algorithms 19(2): 204-234 (1995) | |
30 | Avrim Blum, Lisa Hellerstein, Nick Littlestone: Learning in the Presence of Finitely or Infinitely Many Irrelevant Attributes. J. Comput. Syst. Sci. 50(1): 32-40 (1995) | |
29 | Avrim Blum, Steven Rudich: Fast Learning of k-Term DNF Formulas with Queries. J. Comput. Syst. Sci. 51(3): 367-373 (1995) | |
1994 | ||
28 | EE | Avrim Blum, Roni Khardon, Eyal Kushilevitz, Leonard Pitt, Dan Roth: On Learning Read-k-Satisfy-j DNF. COLT 1994: 110-117 |
27 | EE | Avrim Blum, Prasad Chalasani, Don Coppersmith, William R. Pulleyblank, Prabhakar Raghavan, Madhu Sudan: The minimum latency problem. STOC 1994: 163-171 |
26 | EE | Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay Mansour, Steven Rudich: Weakly learning DNF and characterizing statistical query learning using Fourier analysis. STOC 1994: 253-262 |
25 | EE | Avrim Blum: New Approximation Algorithms for Graph Coloring. J. ACM 41(3): 470-516 (1994) |
24 | EE | Avrim Blum, Ming Li, John Tromp, Mihalis Yannakakis: Linear Approximation of Shortest Superstrings. J. ACM 41(4): 630-647 (1994) |
23 | Avrim Blum: Separating Distribution-Free and Mistake-Bound Learning Models over the Boolean Domain. SIAM J. Comput. 23(5): 990-1000 (1994) | |
1993 | ||
22 | EE | Avrim Blum, Prasad Chalasani, Jeffrey C. Jackson: On Learning Embedded Symmetric Concepts. COLT 1993: 337-346 |
21 | EE | Avrim Blum, Merrick L. Furst, Michael J. Kearns, Richard J. Lipton: Cryptographic Primitives Based on Hard Learning Problems. CRYPTO 1993: 278-291 |
20 | Avrim Blum, Prasad Chalasani: An On-Line Algorithm for Improving Performance in Navigation FOCS 1993: 2-11 | |
19 | Avrim Blum, Ravi Kannan: Learning an Intersection of k Halfspaces over a Uniform Distribution FOCS 1993: 312-320 | |
18 | Avrim Blum, Ronald L. Rivest: Training a 3-Node Neural Network is NP-Complete. Machine Learning: From Theory to Applications 1993: 9-28 | |
1992 | ||
17 | EE | Avrim Blum, Prasad Chalasani: Learning Switching Concepts. COLT 1992: 231-242 |
16 | Avrim Blum, Howard J. Karloff, Yuval Rabani, Michael E. Saks: A Decomposition Theorem and Bounds for Randomized Server Problems FOCS 1992: 197-207 | |
15 | Avrim Blum, Steven Rudich: Fast Learning of k-Term DNF Formulas with Queries STOC 1992: 382-389 | |
14 | Avrim Blum: Rank-r Decision Trees are a Subclass of r-Decision Lists. Inf. Process. Lett. 42(4): 183-185 (1992) | |
13 | Avrim Blum: Learning Boolean Functions in an Infinite Attribute Space. Machine Learning 9: 373-386 (1992) | |
12 | EE | Avrim Blum, Ronald L. Rivest: Training a 3-node neural network is NP-complete. Neural Networks 5(1): 117-127 (1992) |
1991 | ||
11 | EE | Avrim Blum, Lisa Hellerstein, Nick Littlestone: Learning in the Presence of Finitely or Infinitely Many Irrelevant Attributes. COLT 1991: 157-166 |
10 | Avrim Blum, Tao Jiang, Ming Li, John Tromp, Mihalis Yannakakis: Linear Approximation of Shortest Superstrings STOC 1991: 328-336 | |
9 | Avrim Blum, Prabhakar Raghavan, Baruch Schieber: Navigating in Unfamiliar Geometric Terrain (Preliminary Version) STOC 1991: 494-504 | |
1990 | ||
8 | EE | Avrim Blum, Mona Singh: Learning Functions of k Terms. COLT 1990: 144-153 |
7 | EE | Avrim Blum: Separating PAC and Mistake-Bound Learning Models Over the Boolean Domain (Abstract). COLT 1990: 393 |
6 | Avrim Blum: Separating Distribution-Free and Mistake-Bound Learning Models over the Boolean Domain FOCS 1990: 211-218 | |
5 | Avrim Blum: Some Tools for Approximate 3-Coloring (Extended Abstract) FOCS 1990: 554-562 | |
4 | Avrim Blum: Learning Boolean Functions in an Infinite Atribute Space (Extended Abstract) STOC 1990: 64-72 | |
1989 | ||
3 | Avrim Blum: An \tildeO(n^0.4)-Approximation Algorithm for 3-Coloring (and Improved Approximation Algorithm for k-Coloring) STOC 1989: 535-542 | |
1988 | ||
2 | EE | Avrim Blum, Ronald L. Rivest: Training a 3-Node Neural Network is NP-Complete. COLT 1988: 9-18 |
1 | EE | Avrim Blum, Ronald L. Rivest: Training a 3-Node Neural Network is NP-Complete. NIPS 1988: 494-501 |