dblp.uni-trier.dewww.uni-trier.de

Gábor Lugosi

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2009
56EEGábor Lugosi, Omiros Papaspiliopoulos, Gilles Stoltz: Online Multi-task Learning with Hard Constraints CoRR abs/0902.3526: (2009)
55EELuc Devroye, Gábor Lugosi, GaHyun Park, Wojciech Szpankowski: Multiple choice tries and distributed hash tables. Random Struct. Algorithms 34(3): 337-367 (2009)
2008
54EEAndrás György, Gábor Lugosi, György Ottucsák: On-line Sequential Bin Packing. COLT 2008: 447-454
53EEGábor Lugosi: Concentration Inequalities. COLT 2008: 7-8
52EEGérard Biau, Luc Devroye, Gábor Lugosi: On the Performance of Clustering in Hilbert Spaces. IEEE Transactions on Information Theory 54(2): 781-790 (2008)
51EEAndrás György, Tamás Linder, Gábor Lugosi: Tracking the Best Quantizer. IEEE Transactions on Information Theory 54(4): 1604-1625 (2008)
2007
50 Gábor Lugosi: Sequential prediction under incomplete feedback. CCIA 2007: 3-5
49EEGábor Lugosi, Shie Mannor, Gilles Stoltz: Strategies for Prediction Under Imperfect Monitoring. COLT 2007: 248-262
48EELuc Devroye, Gábor Lugosi, GaHyun Park, Wojciech Szpankowski: Multiple choice tries and distributed hash tables. SODA 2007: 891-899
47EEAndrás György, Tamás Linder, Gábor Lugosi, György Ottucsák: The on-line shortest path problem under partial monitoring CoRR abs/0704.1020: (2007)
46EEGábor Lugosi, Shie Mannor, Gilles Stoltz: Strategies for prediction under imperfect monitoring CoRR abs/math/0701419: (2007)
45EEAvrim Blum, Gábor Lugosi, Hans-Ulrich Simon: Introduction to the special issue on COLT 2006. Machine Learning 69(2-3): 75-77 (2007)
2006
44 Gábor Lugosi, Hans-Ulrich Simon: Learning Theory, 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings Springer 2006
2005
43EEStéphan Clémençon, Gábor Lugosi, Nicolas Vayatis: Ranking and Scoring Using Empirical Risk Minimization. COLT 2005: 1-15
42EEAndrás György, Tamás Linder, Gábor Lugosi: Tracking the Best of Many Experts. COLT 2005: 204-216
41EENicolò Cesa-Bianchi, Gábor Lugosi, Gilles Stoltz: Minimizing regret with label efficient prediction. IEEE Transactions on Information Theory 51(6): 2152-2162 (2005)
40EEGilles Stoltz, Gábor Lugosi: Internal Regret in On-Line Portfolio Selection. Machine Learning 59(1-2): 125-159 (2005)
2004
39EENicolò Cesa-Bianchi, Gábor Lugosi, Gilles Stoltz: Minimizing Regret with Label Efficient Prediction. COLT 2004: 77-92
38EEAndrás György, Tamás Linder, Gábor Lugosi: A "Follow the Perturbed Leader"-type Algorithm for Zero-Delay Quantization of Individual Sequence. Data Compression Conference 2004: 342-351
2003
37EEOlivier Bousquet, Stéphane Boucheron, Gábor Lugosi: Introduction to Statistical Learning Theory. Advanced Lectures on Machine Learning 2003: 169-207
36EEStéphane Boucheron, Gábor Lugosi, Olivier Bousquet: Concentration Inequalities. Advanced Lectures on Machine Learning 2003: 208-240
35EEGilles Stoltz, Gábor Lugosi: Internal Regret in On-Line Portfolio Selection. COLT 2003: 403-417
34EEGilles Blanchard, Gábor Lugosi, Nicolas Vayatis: On the Rate of Convergence of Regularized Boosting Classifiers. Journal of Machine Learning Research 4: 861-894 (2003)
33EENicolò Cesa-Bianchi, Gábor Lugosi: Potential-Based Algorithms in On-Line Prediction and Game Theory. Machine Learning 51(3): 239-261 (2003)
2002
32EEGábor Lugosi, Nicolas Vayatis: A Consistent Strategy for Boosting Algorithms. COLT 2002: 303-318
31 Luc Devroye, László Györfi, Gábor Lugosi: A note on robust hypothesis testing. IEEE Transactions on Information Theory 48(7): 2111-2114 (2002)
30EEAndrás Antos, Balázs Kégl, Tamás Linder, Gábor Lugosi: Data-dependent margin-based generalization bounds for classification. Journal of Machine Learning Research 3: 73-98 (2002)
29 Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi: Model Selection and Error Estimation. Machine Learning 48(1-3): 85-113 (2002)
2001
28EEBalázs Kégl, Tamás Linder, Gábor Lugosi: Data-Dependent Margin-Based Generalization Bounds for Classification. COLT/EuroCOLT 2001: 368-384
27EENicolò Cesa-Bianchi, Gábor Lugosi: Potential-Based Algorithms in Online Prediction and Game Theory. COLT/EuroCOLT 2001: 48-64
26 Tamás Linder, Gábor Lugosi: A zero-delay sequential scheme for lossy coding of individual sequences. IEEE Transactions on Information Theory 47(6): 2533-2538 (2001)
25 Nicolò Cesa-Bianchi, Gábor Lugosi: Worst-Case Bounds for the Logarithmic Loss of Predictors. Machine Learning 43(3): 247-264 (2001)
2000
24 Peter L. Bartlett, Stéphane Boucheron, Gábor Lugosi: Model Selection and Error Estimation. COLT 2000: 286-297
23 Stéphane Boucheron, Gábor Lugosi, Pascal Massart: A sharp concentration inequality with applications. Random Struct. Algorithms 16(3): 277-292 (2000)
1999
22EENicolò Cesa-Bianchi, Gábor Lugosi: Minimax Regret Under log Loss for General Classes of Experts. COLT 1999: 12-18
21 László Györfi, Gábor Lugosi, Gusztáv Morvai: A simple randomized algorithm for sequential prediction of ergodic time series. IEEE Transactions on Information Theory 45(7): 2642-2650 (1999)
1998
20EENicolò Cesa-Bianchi, Gábor Lugosi: On Sequential Prediction of Individual Sequences Relative to a Set of Experts. COLT 1998: 1-11
19EEMárta Horváth, Gábor Lugosi: Scale-sensitive Dimensions and Skeleton Estimates for Classification. Discrete Applied Mathematics 86(1): 37-61 (1998)
18 Peter L. Bartlett, Tamás Linder, Gábor Lugosi: The Minimax Distortion Redundancy in Empirical Quantizer Design. IEEE Transactions on Information Theory 44(5): 1802-1813 (1998)
17 Sanjeev R. Kulkarni, Gábor Lugosi, Santosh S. Venkatesh: Learning Pattern Classification - A Survey. IEEE Transactions on Information Theory 44(6): 2178-2206 (1998)
16 András Antos, Gábor Lugosi: Strong Minimax Lower Bounds for Learning. Machine Learning 30(1): 31-56 (1998)
1997
15 Peter L. Bartlett, Tamás Linder, Gábor Lugosi: A Minimax Lower Bound for Empirical Quantizer Design. EuroCOLT 1997: 210-222
14 Tamás Linder, Gábor Lugosi, Kenneth Zeger: Empirical quantizer design in the presence of source noise or channel noise. IEEE Transactions on Information Theory 43(2): 612-623 (1997)
1996
13EEAndrás Antos, Gábor Lugosi: Strong Minimax Lower Bounds for Learning. COLT 1996: 303-309
12EEGábor Lugosi, Márta Pintér: A Data-Dependent Skeleton Estimate for Learning. COLT 1996: 51-56
11 Tamás Linder, Gábor Lugosi, Kenneth Zeger: Designing Vector Quantizers in the Presence of Source Noise or Channel Noise. Data Compression Conference 1996: 33-42
10 Gábor Lugosi, Kenneth Zeger: Concept learning using complexity regularization. IEEE Transactions on Information Theory 42(1): 48-54 (1996)
1995
9 Tamás Linder, Gábor Lugosi, Kenneth Zeger: Fixed-rate universal lossy source coding and rates of convergence for memoryless sources. IEEE Transactions on Information Theory 41(3): 665-676 (1995)
8 Gábor Lugosi, Kenneth Zeger: Nonparametric estimation via empirical risk minimization. IEEE Transactions on Information Theory 41(3): 677-687 (1995)
7EELuc Devroye, Gábor Lugosi: Lower bounds in pattern recognition and learning. Pattern Recognition 28(7): 1011-1018 (1995)
1994
6 Gábor Lugosi, Miroslaw Pawlak: On the posterior-probability estimate of the error rate of nonparametric classification rules. IEEE Transactions on Information Theory 40(2): 475-481 (1994)
5 Tamás Linder, Gábor Lugosi, Kenneth Zeger: Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding. IEEE Transactions on Information Theory 40(6): 1728-1740 (1994)
1993
4 Tamás Linder, Gábor Lugosi, Kenneth Zeger: Universality and Rates of Convergence in Lossy Source Coding. Data Compression Conference 1993: 89-97
3EEAndrás Faragó, Tamás Linder, Gábor Lugosi: Fast Nearest-Neighbor Search in Dissimilarity Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 15(9): 957-962 (1993)
2 András Faragó, Gábor Lugosi: Strong universal consistency of neural network classifiers. IEEE Transactions on Information Theory 39(4): 1146-1151 (1993)
1992
1EEGábor Lugosi: Learning with an unreliable teacher. Pattern Recognition 25(1): 79-87 (1992)

Coauthor Index

1András Antos [13] [16] [30]
2Peter L. Bartlett [15] [18] [24] [29]
3Gérard Biau [52]
4Gilles Blanchard [34]
5Avrim Blum [45]
6Stéphane Boucheron [23] [24] [29] [36] [37]
7Olivier Bousquet [36] [37]
8Nicolò Cesa-Bianchi [20] [22] [25] [27] [33] [39] [41]
9Stéphan Clémençon [43]
10Luc Devroye [7] [31] [48] [52] [55]
11András Faragó [2] [3]
12László Györfi [21] [31]
13András György [38] [42] [47] [51] [54]
14Márta Horváth [19]
15Balázs Kégl [28] [30]
16Sanjeev R. Kulkarni [17]
17Tamás Linder [3] [4] [5] [9] [11] [14] [15] [18] [26] [28] [30] [38] [42] [47] [51]
18Shie Mannor [46] [49]
19Pascal Massart [23]
20Gusztáv Morvai [21]
21György Ottucsák [47] [54]
22Omiros Papaspiliopoulos [56]
23GaHyun Park [48] [55]
24Miroslaw Pawlak [6]
25Márta Pintér [12]
26Hans-Ulrich Simon [44] [45]
27Gilles Stoltz [35] [39] [40] [41] [46] [49] [56]
28Wojciech Szpankowski [48] [55]
29Nicolas Vayatis [32] [34] [43]
30Santosh S. Venkatesh [17]
31Kenneth Zeger [4] [5] [8] [9] [10] [11] [14]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)