2008 |
125 | EE | Will Bridewell,
Pat Langley,
Ljupco Todorovski,
Saso Dzeroski:
Inductive process modeling.
Machine Learning 71(1): 1-32 (2008) |
2007 |
124 | | Dongkyu Choi,
Tolga Könik,
Negin Nejati,
Chunki Park,
Pat Langley:
A Believable Agent for First-Person Shooter Games.
AIIDE 2007: 71-73 |
123 | EE | Saso Dzeroski,
Pat Langley,
Ljupco Todorovski:
Computational Discovery of Scientific Knowledge.
Computational Discovery of Scientific Knowledge 2007: 1-14 |
122 | EE | Kazumi Saito,
Pat Langley:
Quantitative Revision of Scientific Models.
Computational Discovery of Scientific Knowledge 2007: 120-137 |
121 | EE | Mark Schwabacher,
Pat Langley,
Christopher Potter,
Steven A. Klooster,
Alicia Torregrosa:
Discovering Communicable Models from Earth Science Data.
Computational Discovery of Scientific Knowledge 2007: 138-157 |
2006 |
120 | | Pat Langley,
Dongkyu Choi:
A Unified Cognitive Architecture for Physical Agents.
AAAI 2006 |
119 | EE | Will Bridewell,
Pat Langley,
Steve Racunas,
Stuart R. Borrett:
Learning Process Models with Missing Data.
ECML 2006: 557-565 |
118 | EE | Nima Asgharbeygi,
David J. Stracuzzi,
Pat Langley:
Relational temporal difference learning.
ICML 2006: 49-56 |
117 | EE | Negin Nejati,
Pat Langley,
Tolga Könik:
Learning hierarchical task networks by observation.
ICML 2006: 665-672 |
116 | | Pat Langley:
Cognitive Architectures and General Intelligent Systems.
AI Magazine 27(2): 33-44 (2006) |
115 | EE | Pat Langley,
Oren Shiran,
Jeff Shrager,
Ljupco Todorovski,
Andrew Pohorille:
Constructing explanatory process models from biological data and knowledge.
Artificial Intelligence in Medicine 37(3): 191-201 (2006) |
114 | EE | Will Bridewell,
Javier Nicolás Sánchez,
Pat Langley,
Dorrit Billman:
An interactive environment for the modeling and discovery of scientific knowledge.
International Journal of Man-Machine Studies 64(11): 1099-1114 (2006) |
113 | EE | Pat Langley,
Dongkyu Choi:
Learning Recursive Control Programs from Problem Solving.
Journal of Machine Learning Research 7: 493-518 (2006) |
2005 |
112 | | Ljupco Todorovski,
Will Bridewell,
Oren Shiran,
Pat Langley:
Inducing Hierarchical Process Models in Dynamic Domains.
AAAI 2005: 892-897 |
111 | EE | Will Bridewell,
Narges Bani Asadi,
Pat Langley,
Ljupco Todorovski:
Reducing overfitting in process model induction.
ICML 2005: 81-88 |
110 | EE | Nima Asgharbeygi,
Negin Nejati,
Pat Langley,
Sachiyo Arai:
Guiding Inference Through Relational Reinforcement Learning.
ILP 2005: 20-37 |
109 | EE | Dongkyu Choi,
Pat Langley:
Learning Teleoreactive Logic Programs from Problem Solving.
ILP 2005: 51-68 |
108 | EE | Pat Langley:
An Adaptive Architecture for Physical Agents.
Web Intelligence 2005: 18-25 |
107 | EE | Ryutaro Ichise,
Daniel G. Shapiro,
Pat Langley:
Structured program induction from behavioral traces.
Systems and Computers in Japan 36(11): 49-59 (2005) |
2004 |
106 | EE | Dongkyu Choi,
Matt Kaufman,
Pat Langley,
Negin Nejati,
Daniel G. Shapiro:
An Architecture for Persistent Reactive Behavior.
AAMAS 2004: 988-995 |
105 | EE | Stefan Schrödl,
Kiri Wagstaff,
Seth Rogers,
Pat Langley,
Christopher Wilson:
Mining GPS Traces for Map Refinement.
Data Min. Knowl. Discov. 9(1): 59-87 (2004) |
104 | EE | Cynthia A. Thompson,
Mehmet H. Göker,
Pat Langley:
A Personalized System for Conversational Recommendations.
J. Artif. Intell. Res. (JAIR) 21: 393-428 (2004) |
103 | EE | Nada Lavrac,
Hiroshi Motoda,
Tom Fawcett,
Robert Holte,
Pat Langley,
Pieter W. Adriaans:
Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving.
Machine Learning 57(1-2): 13-34 (2004) |
2003 |
102 | EE | Dileep George,
Kazumi Saito,
Pat Langley,
Stephen D. Bay,
Kevin R. Arrigo:
Discovering Ecosystem Models from Time-Series Data.
Discovery Science 2003: 141-152 |
101 | | Pat Langley,
Dileep George,
Stephen D. Bay,
Kazumi Saito:
Robust Induction of Process Models from Time-Series Data.
ICML 2003: 432-439 |
100 | EE | Jungsoon P. Yoo,
Melinda T. Gervasio,
Pat Langley:
An adaptive stock tracker for personalized trading advice.
IUI 2003: 197-203 |
99 | EE | Jungsoon P. Yoo,
Melinda T. Gervasio,
Pat Langley:
Personalized trading recommendation system.
IUI 2003: 332 |
98 | EE | Javier Nicolás Sánchez,
Pat Langley:
An interactive environment for scientific model construction.
K-CAP 2003: 138-145 |
97 | EE | Lonnie Chrisman,
Pat Langley,
Stephen D. Bay:
Incorporating Biological Knowledge into Evaluation of Causal Regulatory Hypotheses.
Pacific Symposium on Biocomputing 2003: 128-139 |
96 | EE | Marcus A. Maloof,
Pat Langley,
Thomas O. Binford,
Ramakant Nevatia,
Stephanie Sage:
Improved Rooftop Detection in Aerial Images with Machine Learning.
Machine Learning 53(1-2): 157-191 (2003) |
2002 |
95 | EE | Ryutaro Ichise,
Daniel G. Shapiro,
Pat Langley:
Learning Hierarchical Skills from Observation.
Discovery Science 2002: 247-258 |
94 | EE | Kazumi Saito,
Stephen D. Bay,
Pat Langley:
Revising Qualitative Models of Gene Regulation.
Discovery Science 2002: 59-70 |
93 | EE | Stephen D. Bay,
Daniel G. Shapiro,
Pat Langley:
Revising Engineering Models: Combining Computational Discovery with Knowledge.
ECML 2002: 10-22 |
92 | | Pat Langley,
Javier Nicolás Sánchez,
Ljupco Todorovski,
Saso Dzeroski:
Inducing Process Models from Continuous Data.
ICML 2002: 347-354 |
91 | | Daniel G. Shapiro,
Pat Langley:
Separating Skills from Preference: Using Learning to Program by Reward.
ICML 2002: 570-577 |
90 | EE | Jeff Shrager,
Pat Langley,
Andrew Pohorille:
Guiding Revision of Regulatory Models with Expression Data.
Pacific Symposium on Biocomputing 2002: 486-497 |
89 | EE | Kazumi Saito,
Pat Langley:
Discovering Empirical Laws of Web Dynamics.
SAINT 2002: 168-175 |
88 | EE | Stephen D. Bay,
Jeff Shrager,
Andrew Pohorille,
Pat Langley:
Revising regulatory networks: from expression data to linear causal models.
Journal of Biomedical Informatics 35(5-6): 289-297 (2002) |
2001 |
87 | EE | Daniel G. Shapiro,
Pat Langley,
Ross D. Shachter:
Using background knowledge to speed reinforcement learning in physical agents.
Agents 2001: 254-261 |
86 | EE | Sakir Kocabas,
Pat Langley:
An Integrated Framework for Extended Discovery in Particle Physics.
Discovery Science 2001: 182-195 |
85 | EE | Kazumi Saito,
Pat Langley,
Trond Grenager,
Christopher Potter,
Alicia Torregrosa,
Steven A. Klooster:
Computational Revision of Quantitative Scientific Models.
Discovery Science 2001: 336-349 |
84 | EE | Saso Dzeroski,
Pat Langley:
Computational Discovery of Communicable Knowledge: Symposium Report.
Discovery Science 2001: 45-49 |
83 | | Mark Schwabacher,
Pat Langley:
Discovering Communicable Scientific Knowledge from Spatio-Temporal Data.
ICML 2001: 489-496 |
82 | EE | Annaka Kalton,
Pat Langley,
Kiri Wagstaff,
Jungsoon P. Yoo:
Generalized clustering, supervised learning, and data assignment.
KDD 2001: 299-304 |
81 | EE | Pat Langley:
The Computational Support of Scientific Discovery.
Machine Learning and Its Applications 2001: 230-248 |
80 | EE | Wayne Iba,
Pat Langley:
Unsupervised Learning of Probabilistic Concept Hierarchies.
Machine Learning and Its Applications 2001: 39-70 |
2000 |
79 | | Pat Langley:
Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford University, Standord, CA, USA, June 29 - July 2, 2000
Morgan Kaufmann 2000 |
78 | EE | Pat Langley,
Sean Stromsten:
Learning Context-Free Grammars with a Simplicity Bias.
ECML 2000: 220-228 |
77 | | Pat Langley:
Crafting Papers on Machine Learning.
ICML 2000: 1207-1216 |
76 | EE | Sakir Kocabas,
Pat Langley:
Computer generation of process explanations in nuclear astrophysics.
Int. J. Hum.-Comput. Stud. 53(3): 377-392 (2000) |
75 | EE | Pat Langley:
The computational support of scientific discovery.
Int. J. Hum.-Comput. Stud. 53(3): 393-410 (2000) |
74 | EE | Sakir Kocabas,
Pat Langley:
Collaboration, Cooperation and Conflict in Dialogue Systems: Int. J. Human-Computer Studies (2000) 53, 377-392.
Int. J. Hum.-Comput. Stud. 53(6): 1147-1147 (2000) |
73 | EE | Sakir Kocabas,
Pat Langley:
Computer generation of process explanations in nuclear astrophysics.
Int. J. Hum.-Comput. Stud. 53(6): 1149-1164 (2000) |
1999 |
72 | EE | Seth Rogers,
Claude-Nicolas Fiechter,
Pat Langley:
An Adaptive Interactive Agent for Route Advice.
Agents 1999: 198-205 |
71 | EE | Daniel G. Shapiro,
Pat Langley:
Controlling Physical Agents Through Reactive Logic Programming.
Agents 1999: 386-387 |
70 | EE | Pat Langley,
Cynthia A. Thompson,
Renee Elio,
Afsaneh Haddadi:
An Adaptive Conversational Interface for Destination Advice.
CIA 1999: 347-364 |
69 | | Melinda T. Gervasio,
Wayne Iba,
Pat Langley:
Learning User Evaluation Functions for Adaptive Scheduling Assistance.
ICML 1999: 152-161 |
68 | | Pat Langley,
Stephanie Sage:
Tractable Average-Case Analysis of Naive Bayesian Classifiers.
ICML 1999: 220-228 |
67 | EE | Seth Rogers,
Pat Langley,
Christopher Wilson:
Mining GPS Data to Augment Road Models.
KDD 1999: 104-113 |
1998 |
66 | | David E. Moriarty,
Pat Langley:
Learning Cooperative Lane Selection Strategies for Highways.
AAAI/IAAI 1998: 684-691 |
65 | | Melinda T. Gervasio,
Wayne Iba,
Pat Langley:
Learning to Predict User Operations for Adaptive Scheduling.
AAAI/IAAI 1998: 721-726 |
64 | EE | Pat Langley:
The Computer-Aided Discovery of Scientific Knowledge.
Discovery Science 1998: 25-39 |
63 | | Simon Handley,
Pat Langley,
Folke A. Rauscher:
Learning to Predict the Duration of an Automobile Trip.
KDD 1998: 219-223 |
1997 |
62 | | Pat Langley:
Machine Learning for Intelligent Systems.
AAAI/IAAI 1997: 763-769 |
61 | | Pat Langley:
Learning to Sense Selectively in Physical Domains.
Agents 1997: 217-226 |
60 | | Pat Langley:
Machine Learning for Adaptive User Interfaces.
KI 1997: 53-62 |
59 | EE | Avrim Blum,
Pat Langley:
Selection of Relevant Features and Examples in Machine Learning.
Artif. Intell. 97(1-2): 245-271 (1997) |
58 | | Pat Langley,
Karl Pfleger,
Mehran Sahami:
Lazy Acquisition of Place Knowledge.
Artif. Intell. Rev. 11(1-5): 315-342 (1997) |
57 | | Pat Langley,
Gregory M. Provan,
Padhraic Smyth:
Learning with Probabilistic Representations.
Machine Learning 29(2-3): 91-101 (1997) |
1996 |
56 | | Pat Langley:
Induction of Condensed Determinations.
KDD 1996: 327-330 |
55 | | George H. John,
Pat Langley:
Static Versus Dynamic Sampling for Data Mining.
KDD 1996: 367-370 |
54 | EE | Kevin Knight,
Pat Langley,
Paul R. Cohen:
What makes a compelling empirical evaluation?
IEEE Expert 11(5): 10-14 (1996) |
1995 |
53 | | Pat Langley,
Karl Pfleger:
Case-Based Acquisition of Place Knowledge.
ICML 1995: 344-352 |
52 | EE | George H. John,
Pat Langley:
Estimating Continuous Distributions in Bayesian Classifiers.
UAI 1995: 338-345 |
51 | | Pat Langley,
Herbert A. Simon:
Applications of Machine Learning and Rule Induction.
Commun. ACM 38(11): 54-64 (1995) |
1994 |
50 | | Pat Langley:
Elements of Machine Learning.
Morgan Kaufmann 1994 |
49 | | Pat Langley,
Wayne Iba,
Jeff Shrager:
Reactive and Automatic Behavior in Plan Execution.
AIPS 1994: 299-304 |
48 | EE | Pat Langley,
Stephanie Sage:
Induction of Selective Bayesian Classifiers.
UAI 1994: 399-406 |
1993 |
47 | | Pat Langley:
Induction of Recursive Bayesian Classifiers.
ECML 1993: 153-164 |
46 | | Pat Langley,
Wayne Iba:
Average-Case Analysis of a Nearest Neighbor Algorithm.
IJCAI 1993: 889-894 |
45 | | Bernd Nordhausen,
Pat Langley:
An Integrated Framework for Empirical Discovery.
Machine Learning 12: 17-47 (1993) |
1992 |
44 | | Pat Langley,
Wayne Iba,
Kevin Thompson:
An Analysis of Bayesian Classifiers.
AAAI 1992: 223-228 |
43 | | Wayne Iba,
Pat Langley:
Induction of One-Level Decision Trees.
ML 1992: 233-240 |
1991 |
42 | | Kathleen B. McKusick,
Pat Langley:
Constraints on Tree Structure in Concept Formation.
IJCAI 1991: 810-816 |
41 | | Kevin Thompson,
Pat Langley,
Wayne Iba:
Using Background Knowledge in Concept Formation.
ML 1991: 554-558 |
40 | | Pat Langley,
John A. Allen:
The Acquisition of Human Planning Expertise.
ML 1991: 80-84 |
39 | | Pat Langley,
Kathleen B. McKusick,
John A. Allen,
Wayne Iba,
Kevin Thompson:
A Design for the Icarus Architecture.
SIGART Bulletin 2(4): 104-109 (1991) |
1990 |
38 | | Bernd Nordhausen,
Pat Langley:
A Robust Approach to Numeric Discovery.
ML 1990: 411-418 |
37 | | Pat Langley:
Advice to Machine Learning Authors.
Machine Learning 5: 233-237 (1990) |
1989 |
36 | | James Wogulis,
Pat Langley:
Improving Efficiency by Learning Intermediate Concepts.
IJCAI 1989: 657-662 |
35 | | Pat Langley:
Unifying Themes in Empirical and Explanation-Based Learning.
ML 1989: 2-4 |
34 | | John A. Allen,
Pat Langley:
Using Concept Hierarchies to Organize Plan Knowledge.
ML 1989: 229-231 |
33 | | Kevin Thompson,
Pat Langley:
Incremental Concept Formation with Composite Objects.
ML 1989: 371-374 |
32 | | John H. Gennari,
Pat Langley,
Douglas H. Fisher:
Models of Incremental Concept Formation.
Artif. Intell. 40(1-3): 11-61 (1989) |
31 | | Pat Langley,
Jan M. Zytkow:
Data-Driven Approaches to Empirical Discovery.
Artif. Intell. 40(1-3): 283-312 (1989) |
30 | | Pat Langley:
Toward a Unified Science of Machine Learning.
Machine Learning 3: 253-259 (1989) |
1988 |
29 | | Dennis F. Kibler,
Pat Langley:
Machine Learning as an Experimental Science.
EWSL 1988: 81-92 |
28 | | Donald Rose,
Pat Langley:
A Hill-Climbing Approach to Machine Discovery.
ML 1988: 367-373 |
27 | | Wayne Iba,
James Wogulis,
Pat Langley:
Trading Off Simplicity and Coverage in Incremental concept Learning.
ML 1988: 73-79 |
26 | | Pat Langley:
Machine Learning as an Experimental Science.
Machine Learning 3: 5-8 (1988) |
1987 |
25 | | Bernd Nordhausen,
Pat Langley:
Towards an Integrated Discovery System.
IJCAI 1987: 198-200 |
24 | | Wayne Iba,
Pat Langley:
A computational theory of motor learning.
Computational Intelligence 3: 338-350 (1987) |
23 | | Pat Langley:
Machine Learning and Grammar Induction.
Machine Learning 2(1): 5-8 (1987) |
22 | | Pat Langley:
Machine Learning and Concept Formation.
Machine Learning 2(2): 99-102 (1987) |
21 | | Pat Langley:
Research Papers in Machine Learning.
Machine Learning 2(3): 195-198 (1987) |
1986 |
20 | | Donald Rose,
Pat Langley:
STAHLp: Belief Revision in Scientific Discovery.
AAAI 1986: 528-532 |
19 | | Pat Langley:
On Machine Learning.
Machine Learning 1(1): 5-10 (1986) |
18 | | Pat Langley:
Editorial: The Terminology of Machine Learning.
Machine Learning 1(2): 141-144 (1986) |
17 | | Pat Langley:
Editorial: Human and Machine Learning.
Machine Learning 1(3): 243-248 (1986) |
16 | | Pat Langley,
Ryszard S. Michalski:
Machine Learning and Discovery.
Machine Learning 1(4): 363-366 (1986) |
15 | | Donald Rose,
Pat Langley:
Chemical Discovery as Belief Revision.
Machine Learning 1(4): 423-451 (1986) |
1985 |
14 | | Douglas H. Fisher,
Pat Langley:
Approaches to Conceptual Clustering.
IJCAI 1985: 691-697 |
13 | | Pat Langley:
Learning to Search: From Weak Methods to Domain-Specific Heuristics.
Cognitive Science 9(2): 217-260 (1985) |
1984 |
12 | | Pat Langley,
Stellan Ohlsson:
Automated Cognitive Modeling.
AAAI 1984: 193-197 |
1983 |
11 | | Pat Langley:
Learning Effective Search Heuristics.
IJCAI 1983: 419-421 |
10 | | Pat Langley,
Jan M. Zytkow,
Gary L. Bradshaw,
Herbert A. Simon:
Three Facets of Scientific Discovery.
IJCAI 1983: 465-468 |
9 | | Stephanie Sage,
Pat Langley:
Modeling Cognitive Development on the Balance Scale Task.
IJCAI 1983: 94-96 |
8 | | Pat Langley:
Representational Issues in Learning Systems.
IEEE Computer 16(10): 47-51 (1983) |
7 | | Pat Langley:
Learning Search Strategies through Discrimination.
International Journal of Man-Machine Studies 18(6): 513-541 (1983) |
1982 |
6 | | Pat Langley:
Strategy Acquisition Governed by Experimentation.
ECAI 1982: 171-176 |
5 | | Derek H. Sleeman,
Pat Langley,
Tom M. Mitchell:
Learning from Solution Paths: An Approach to the Credit Assignment Problem.
AI Magazine 3(2): 48-52 (1982) |
1981 |
4 | | Pat Langley,
Gary L. Bradshaw,
Herbert A. Simon:
BACON.5: The Discovery of Conservation Laws.
IJCAI 1981: 121-126 |
1980 |
3 | EE | Pat Langley:
A Production System Model Of First Language Acquisition.
COLING 1980: 183-189 |
1977 |
2 | | Michael D. Rychener,
Charles Forgy,
Pat Langley,
John P. McDermott,
Allen Newell,
K. Ramakrishna:
Problems in Building an Instructable Production System.
IJCAI 1977: 337 |
1 | | Pat Langley:
BACON: A Production System That Discovers Empirical Laws.
IJCAI 1977: 344-344 |