12. COLT 1999:
Santa Cruz,
CA,
USA
COLT 1999,
Proceedings of the Twelfth Annual Conference on Computational Learning Theory,
July 7-9,
1999,
Santa Cruz,
CA,
USA. ACM,
1999
- Claudio Gentile, Nick Littlestone:
The Robustness of the p-Norm Algorithms.
1-11
Electronic Edition (ACM DL) BibTeX
- Nicolò Cesa-Bianchi, Gábor Lugosi:
Minimax Regret Under log Loss for General Classes of Experts.
12-18
Electronic Edition (ACM DL) BibTeX
- Tsachy Weissman, Neri Merhav:
On Prediction of Individual Sequences Relative to a Set of Experts in the Presence of Noise.
19-28
Electronic Edition (ACM DL) BibTeX
- Geoffrey J. Gordon:
Regret Bounds for Prediction Problems.
29-40
Electronic Edition (ACM DL) BibTeX
- Robert H. Sloan, György Turán:
On Theory Revision with Queries.
41-52
Electronic Edition (ACM DL) BibTeX
- Yoav Freund, Yishay Mansour:
Estimating a Mixture of Two Product Distributions.
53-62
Electronic Edition (ACM DL) BibTeX
- Stephen Kwek:
An Apprentice Learning Model (extended abstract).
63-74
Electronic Edition (ACM DL) BibTeX
- Nader H. Bshouty, Jeffrey C. Jackson, Christino Tamon:
Uniform-Distribution Attribute Noise Learnability.
75-80
Electronic Edition (ACM DL) BibTeX
- Nader H. Bshouty, David K. Wilson:
On Learning in the Presence of Unspecified Attribute Values.
81-87
Electronic Edition (ACM DL) BibTeX
- Paul W. Goldberg:
Learning Fixed-Dimension Linear Thresholds from Fragmented Data.
88-99
Electronic Edition (ACM DL) BibTeX
- David B. Shmoys:
Approximation Algorithms for Clustering Problems.
100-102
Electronic Edition (ACM DL) BibTeX
- Yoav Freund:
An Adaptive Version of the Boost by Majority Algorithm.
102-113
Electronic Edition (ACM DL) BibTeX
- Robert E. Schapire:
Drifting Games.
114-124
Electronic Edition (ACM DL) BibTeX
- John D. Lafferty:
Additive Models, Boosting, and Inference for Generalized Divergences.
125-133
Electronic Edition (ACM DL) BibTeX
- Jyrki Kivinen, Manfred K. Warmuth:
Boosting as Entropy Projection.
134-144
Electronic Edition (ACM DL) BibTeX
- Venkatesan Guruswami, Amit Sahai:
Multiclass Learning, Boosting, and Error-Correcting Codes.
145-155
Electronic Edition (ACM DL) BibTeX
- Tong Zhang:
Theoretical Analysis of a Class of Randomized Regularization Methods.
156-163
Electronic Edition (ACM DL) BibTeX
- David A. McAllester:
PAC-Bayesian Model Averaging.
164-170
Electronic Edition (ACM DL) BibTeX
- Peter Grünwald:
Viewing all Models as ``Probabilistic''.
171-182
Electronic Edition (ACM DL) BibTeX
- Yishay Mansour:
Reinforcement Learning and Mistake Bounded Algorithms.
183-192
Electronic Edition (ACM DL) BibTeX
- Vladislav Tadic:
Convergence Analysis of Temporal-Difference Learning Algorithms with Linear Function Approximation.
193-202
Electronic Edition (ACM DL) BibTeX
- Avrim Blum, Adam Kalai, John Langford:
Beating the Hold-Out: Bounds for K-fold and Progressive Cross-Validation.
203-208
Electronic Edition (ACM DL) BibTeX
- John Langford, Avrim Blum:
Microchoice Bounds and Self Bounding Learning Algorithms.
209-214
Electronic Edition (ACM DL) BibTeX
- Atsuyoshi Nakamura:
Learning Specialist Decision Lists.
215-225
Electronic Edition (ACM DL) BibTeX
- Yuri Kalnishkan:
Linear Relations between Square-Loss and Kolmogorov Complexity.
226-232
Electronic Edition (ACM DL) BibTeX
- Chamy Allenberg:
Individual Sequence Prediction - Upper Bounds and Application for Complexity.
233-242
Electronic Edition (ACM DL) BibTeX
- Sebastiaan Terwijn:
Extensional Set Learning (extended abstract).
243-248
Electronic Edition (ACM DL) BibTeX
- Sanjay Jain, Arun Sharma:
On a Generalized Notion of Mistake Bounds.
249-256
Electronic Edition (ACM DL) BibTeX
- Efim B. Kinber, Christophe Papazian, Carl H. Smith, Rolf Wiehagen:
On the Intrinsic Complexity of Learning Recursive Functions.
257-266
Electronic Edition (ACM DL) BibTeX
- Ying Guo, Peter L. Bartlett, John Shawe-Taylor, Robert C. Williamson:
Covering Numbers for Support Vector Machines.
267-277
Electronic Edition (ACM DL) BibTeX
- John Shawe-Taylor, Nello Cristianini:
Further Results on the Margin Distribution.
278-285
Electronic Edition (ACM DL) BibTeX
- Nader H. Bshouty, Jeffrey C. Jackson, Christino Tamon:
More Efficient PAC-Learning of DNF with Membership Queries Under the Uniform Distribution.
286-295
Electronic Edition (ACM DL) BibTeX
- Rocco A. Servedio:
On PAC Learning Using Winnow, Perceptron, and a Perceptron-like Algorithm.
296-307
Electronic Edition (ACM DL) BibTeX
- David Gamarnik:
Extension of the PAC Framework to Finite and Countable Markov Chains.
308-317
Electronic Edition (ACM DL) BibTeX
- Elias Abboud, Nader Agha, Nader H. Bshouty, Nizar Radwan, Fathi Saleh:
Learning Threshold Functions with Small Weights Using Membership Queries.
318-322
Electronic Edition (ACM DL) BibTeX
- Thomas R. Amoth, Paul Cull, Prasad Tadepalli:
Exact Learning of Unordered Tree Patterns from Queries.
323-332
Electronic Edition (ACM DL) BibTeX
Copyright © Sat May 16 23:02:59 2009
by Michael Ley (ley@uni-trier.de)