2009 | ||
---|---|---|
61 | EE | Daniel Hsu, Sham M. Kakade, John Langford, Tong Zhang: Multi-Label Prediction via Compressed Sensing CoRR abs/0902.1284: (2009) |
60 | EE | Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, Alex J. Smola: Feature Hashing for Large Scale Multitask Learning CoRR abs/0902.2206: (2009) |
59 | EE | Alina Beygelzimer, John Langford, Pradeep Ravikumar: Error-Correcting Tournaments CoRR abs/0902.3176: (2009) |
58 | EE | Alina Beygelzimer, John Langford, Yuri Lifshits, Gregory B. Sorkin, Alexander L. Strehl: Conditional Probability Tree Estimation Analysis and Algorithms CoRR abs/0903.4217: (2009) |
57 | EE | Nicholas J. Hopper, Luis von Ahn, John Langford: Provably Secure Steganography. IEEE Trans. Computers 58(5): 662-676 (2009) |
56 | EE | Maria-Florina Balcan, Alina Beygelzimer, John Langford: Agnostic active learning. J. Comput. Syst. Sci. 75(1): 78-89 (2009) |
2008 | ||
55 | EE | Nicolas S. Lambert, John Langford, Jennifer Wortman, Yiling Chen, Daniel M. Reeves, Yoav Shoham, David M. Pennock: Self-financed wagering mechanisms for forecasting. ACM Conference on Electronic Commerce 2008: 170-179 |
54 | EE | John Langford, Alexander L. Strehl, Jennifer Wortman: Exploration scavenging. ICML 2008: 528-535 |
53 | EE | Sharad Goel, John Langford, Alexander L. Strehl: Predictive Indexing for Fast Search. NIPS 2008: 505-512 |
52 | EE | John Langford, Lihong Li, Tong Zhang: Sparse Online Learning via Truncated Gradient. NIPS 2008: 905-912 |
51 | EE | John Langford, Lihong Li, Tong Zhang: Sparse Online Learning via Truncated Gradient CoRR abs/0806.4686: (2008) |
50 | EE | Alina Beygelzimer, John Langford: The Offset Tree for Learning with Partial Labels CoRR abs/0812.4044: (2008) |
49 | EE | Alina Beygelzimer, Sanjoy Dasgupta, John Langford: Importance Weighted Active Learning CoRR abs/0812.4952: (2008) |
48 | EE | Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith, John Langford, Gregory B. Sorkin: Robust reductions from ranking to classification. Machine Learning 72(1-2): 139-153 (2008) |
2007 | ||
47 | EE | Maria-Florina Balcan, Nikhil Bansal, Alina Beygelzimer, Don Coppersmith, John Langford, Gregory B. Sorkin: Robust Reductions from Ranking to Classification. COLT 2007: 604-619 |
46 | EE | John Langford, Tong Zhang: The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information. NIPS 2007 |
45 | EE | Jennifer Wortman, Yevgeniy Vorobeychik, Lihong Li, John Langford: Maintaining Equilibria During Exploration in Sponsored Search Auctions. WINE 2007: 119-130 |
44 | EE | Peter Grünwald, John Langford: Suboptimal behavior of Bayes and MDL in classification under misspecification. Machine Learning 66(2-3): 119-149 (2007) |
2006 | ||
43 | EE | Jacob Abernethy, John Langford, Manfred K. Warmuth: Continuous Experts and the Binning Algorithm. COLT 2006: 544-558 |
42 | EE | Maria-Florina Balcan, Alina Beygelzimer, John Langford: Agnostic active learning. ICML 2006: 65-72 |
41 | EE | Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, Michael L. Littman: PAC model-free reinforcement learning. ICML 2006: 881-888 |
40 | EE | Alina Beygelzimer, Sham Kakade, John Langford: Cover trees for nearest neighbor. ICML 2006: 97-104 |
39 | EE | Naoki Abe, Bianca Zadrozny, John Langford: Outlier detection by active learning. KDD 2006: 504-509 |
38 | EE | John Langford, Roberto Oliveira, Bianca Zadrozny: Predicting Conditional Quantiles via Reduction to Classification. UAI 2006 |
37 | EE | John Langford, Jeffrey Roy: E-government and public-private partnerships in Canada: when failure is no longer an option. IJEB 4(2): 118-135 (2006) |
2005 | ||
36 | Alina Beygelzimer, John Langford, Bianca Zadrozny: Weighted One-Against-All. AAAI 2005: 720-725 | |
35 | EE | John Langford, Alina Beygelzimer: Sensitive Error Correcting Output Codes. COLT 2005: 158-172 |
34 | EE | John Langford: The Cross Validation Problem. COLT 2005: 687-688 |
33 | EE | Matti Kääriäinen, John Langford: A comparison of tight generalization error bounds. ICML 2005: 409-416 |
32 | EE | John Langford, Bianca Zadrozny: Relating reinforcement learning performance to classification performance. ICML 2005: 473-480 |
31 | EE | Alina Beygelzimer, Varsha Dani, Thomas P. Hayes, John Langford, Bianca Zadrozny: Error limiting reductions between classification tasks. ICML 2005: 49-56 |
30 | EE | Luis von Ahn, Nicholas J. Hopper, John Langford: Covert two-party computation. STOC 2005: 513-522 |
29 | EE | John Langford: Tutorial on Practical Prediction Theory for Classification. Journal of Machine Learning Research 6: 273-306 (2005) |
2004 | ||
28 | EE | Peter Grünwald, John Langford: Suboptimal Behavior of Bayes and MDL in Classification Under Misspecification. COLT 2004: 331-347 |
27 | EE | Naoki Abe, Bianca Zadrozny, John Langford: An iterative method for multi-class cost-sensitive learning. KDD 2004: 3-11 |
26 | EE | Arindam Banerjee, John Langford: An objective evaluation criterion for clustering. KDD 2004: 515-520 |
25 | EE | Peter Grünwald, John Langford: Suboptimal behaviour of Bayes and MDL in classification under misspecification CoRR math.ST/0406221: (2004) |
24 | EE | Luis von Ahn, Manuel Blum, John Langford: Telling humans and computers apart automatically. Commun. ACM 47(2): 56-60 (2004) |
23 | EE | Alina Beygelzimer, Varsha Dani, Thomas P. Hayes, John Langford: Reductions Between Classification Tasks Electronic Colloquium on Computational Complexity (ECCC)(077): (2004) |
22 | EE | John Langford, David A. McAllester: Computable Shell Decomposition Bounds. Journal of Machine Learning Research 5: 529-547 (2004) |
2003 | ||
21 | EE | Sham Kakade, Michael J. Kearns, John Langford, Luis E. Ortiz: Correlated equilibria in graphical games. ACM Conference on Electronic Commerce 2003: 42-47 |
20 | EE | Avrim Blum, John Langford: PAC-MDL Bounds. COLT 2003: 344-357 |
19 | EE | Luis von Ahn, Manuel Blum, Nicholas J. Hopper, John Langford: CAPTCHA: Using Hard AI Problems for Security. EUROCRYPT 2003: 294-311 |
18 | EE | Bianca Zadrozny, John Langford, Naoki Abe: Cost-Sensitive Learning by Cost-Proportionate Example Weighting. ICDM 2003: 435- |
17 | Sham Kakade, Michael J. Kearns, John Langford: Exploration in Metric State Spaces. ICML 2003: 306-312 | |
16 | EE | John Langford, Avrim Blum: Microchoice Bounds and Self Bounding Learning Algorithms. Machine Learning 51(2): 165-179 (2003) |
2002 | ||
15 | EE | Nicholas J. Hopper, John Langford, Luis von Ahn: Provably Secure Steganography. CRYPTO 2002: 77-92 |
14 | Sham Kakade, John Langford: Approximately Optimal Approximate Reinforcement Learning. ICML 2002: 267-274 | |
13 | John Langford: Combining Trainig Set and Test Set Bounds. ICML 2002: 331-338 | |
12 | John Langford, Martin Zinkevich, Sham Kakade: Competitive Analysis of the Explore/Exploit Tradeoff. ICML 2002: 339-346 | |
11 | EE | John Langford, John Shawe-Taylor: PAC-Bayes & Margins. NIPS 2002: 423-430 |
2001 | ||
10 | John Langford, Matthias Seeger, Nimrod Megiddo: An Improved Predictive Accuracy Bound for Averaging Classifiers. ICML 2001: 290-297 | |
9 | EE | John Langford, Rich Caruana: (Not) Bounding the True Error. NIPS 2001: 809-816 |
8 | EE | Sebastian Thrun, John Langford, Vandi Verma: Risk Sensitive Particle Filters. NIPS 2001: 961-968 |
2000 | ||
7 | John Langford, David A. McAllester: Computable Shell Decomposition Bounds. COLT 2000: 25-34 | |
6 | Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum: FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness. ICML 2000: 703-710 | |
1999 | ||
5 | EE | Avrim Blum, Adam Kalai, John Langford: Beating the Hold-Out: Bounds for K-fold and Progressive Cross-Validation. COLT 1999: 203-208 |
4 | EE | John Langford, Avrim Blum: Microchoice Bounds and Self Bounding Learning Algorithms. COLT 1999: 209-214 |
3 | Avrim Blum, John Langford: Probabilistic Planning in the Graphplan Framework. ECP 1999: 319-332 | |
2 | Sebastian Thrun, John Langford, Dieter Fox: Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes. ICML 1999: 415-424 | |
1998 | ||
1 | EE | Avrim Blum, Carl Burch, John Langford: On Learning Monotone Boolean Functions. FOCS 1998: 408-415 |