2009 |
61 | EE | Daniel Hsu,
Sham M. Kakade,
John Langford,
Tong Zhang:
Multi-Label Prediction via Compressed Sensing
CoRR abs/0902.1284: (2009) |
60 | EE | Kilian Weinberger,
Anirban Dasgupta,
Josh Attenberg,
John Langford,
Alex J. Smola:
Feature Hashing for Large Scale Multitask Learning
CoRR abs/0902.2206: (2009) |
59 | EE | Alina Beygelzimer,
John Langford,
Pradeep Ravikumar:
Error-Correcting Tournaments
CoRR abs/0902.3176: (2009) |
58 | EE | Alina Beygelzimer,
John Langford,
Yuri Lifshits,
Gregory B. Sorkin,
Alexander L. Strehl:
Conditional Probability Tree Estimation Analysis and Algorithms
CoRR abs/0903.4217: (2009) |
57 | EE | Nicholas J. Hopper,
Luis von Ahn,
John Langford:
Provably Secure Steganography.
IEEE Trans. Computers 58(5): 662-676 (2009) |
56 | EE | Maria-Florina Balcan,
Alina Beygelzimer,
John Langford:
Agnostic active learning.
J. Comput. Syst. Sci. 75(1): 78-89 (2009) |
2008 |
55 | EE | Nicolas S. Lambert,
John Langford,
Jennifer Wortman,
Yiling Chen,
Daniel M. Reeves,
Yoav Shoham,
David M. Pennock:
Self-financed wagering mechanisms for forecasting.
ACM Conference on Electronic Commerce 2008: 170-179 |
54 | EE | John Langford,
Alexander L. Strehl,
Jennifer Wortman:
Exploration scavenging.
ICML 2008: 528-535 |
53 | EE | Sharad Goel,
John Langford,
Alexander L. Strehl:
Predictive Indexing for Fast Search.
NIPS 2008: 505-512 |
52 | EE | John Langford,
Lihong Li,
Tong Zhang:
Sparse Online Learning via Truncated Gradient.
NIPS 2008: 905-912 |
51 | EE | John Langford,
Lihong Li,
Tong Zhang:
Sparse Online Learning via Truncated Gradient
CoRR abs/0806.4686: (2008) |
50 | EE | Alina Beygelzimer,
John Langford:
The Offset Tree for Learning with Partial Labels
CoRR abs/0812.4044: (2008) |
49 | EE | Alina Beygelzimer,
Sanjoy Dasgupta,
John Langford:
Importance Weighted Active Learning
CoRR abs/0812.4952: (2008) |
48 | EE | Maria-Florina Balcan,
Nikhil Bansal,
Alina Beygelzimer,
Don Coppersmith,
John Langford,
Gregory B. Sorkin:
Robust reductions from ranking to classification.
Machine Learning 72(1-2): 139-153 (2008) |
2007 |
47 | EE | Maria-Florina Balcan,
Nikhil Bansal,
Alina Beygelzimer,
Don Coppersmith,
John Langford,
Gregory B. Sorkin:
Robust Reductions from Ranking to Classification.
COLT 2007: 604-619 |
46 | EE | John Langford,
Tong Zhang:
The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information.
NIPS 2007 |
45 | EE | Jennifer Wortman,
Yevgeniy Vorobeychik,
Lihong Li,
John Langford:
Maintaining Equilibria During Exploration in Sponsored Search Auctions.
WINE 2007: 119-130 |
44 | EE | Peter Grünwald,
John Langford:
Suboptimal behavior of Bayes and MDL in classification under misspecification.
Machine Learning 66(2-3): 119-149 (2007) |
2006 |
43 | EE | Jacob Abernethy,
John Langford,
Manfred K. Warmuth:
Continuous Experts and the Binning Algorithm.
COLT 2006: 544-558 |
42 | EE | Maria-Florina Balcan,
Alina Beygelzimer,
John Langford:
Agnostic active learning.
ICML 2006: 65-72 |
41 | EE | Alexander L. Strehl,
Lihong Li,
Eric Wiewiora,
John Langford,
Michael L. Littman:
PAC model-free reinforcement learning.
ICML 2006: 881-888 |
40 | EE | Alina Beygelzimer,
Sham Kakade,
John Langford:
Cover trees for nearest neighbor.
ICML 2006: 97-104 |
39 | EE | Naoki Abe,
Bianca Zadrozny,
John Langford:
Outlier detection by active learning.
KDD 2006: 504-509 |
38 | EE | John Langford,
Roberto Oliveira,
Bianca Zadrozny:
Predicting Conditional Quantiles via Reduction to Classification.
UAI 2006 |
37 | EE | John Langford,
Jeffrey Roy:
E-government and public-private partnerships in Canada: when failure is no longer an option.
IJEB 4(2): 118-135 (2006) |
2005 |
36 | | Alina Beygelzimer,
John Langford,
Bianca Zadrozny:
Weighted One-Against-All.
AAAI 2005: 720-725 |
35 | EE | John Langford,
Alina Beygelzimer:
Sensitive Error Correcting Output Codes.
COLT 2005: 158-172 |
34 | EE | John Langford:
The Cross Validation Problem.
COLT 2005: 687-688 |
33 | EE | Matti Kääriäinen,
John Langford:
A comparison of tight generalization error bounds.
ICML 2005: 409-416 |
32 | EE | John Langford,
Bianca Zadrozny:
Relating reinforcement learning performance to classification performance.
ICML 2005: 473-480 |
31 | EE | Alina Beygelzimer,
Varsha Dani,
Thomas P. Hayes,
John Langford,
Bianca Zadrozny:
Error limiting reductions between classification tasks.
ICML 2005: 49-56 |
30 | EE | Luis von Ahn,
Nicholas J. Hopper,
John Langford:
Covert two-party computation.
STOC 2005: 513-522 |
29 | EE | John Langford:
Tutorial on Practical Prediction Theory for Classification.
Journal of Machine Learning Research 6: 273-306 (2005) |
2004 |
28 | EE | Peter Grünwald,
John Langford:
Suboptimal Behavior of Bayes and MDL in Classification Under Misspecification.
COLT 2004: 331-347 |
27 | EE | Naoki Abe,
Bianca Zadrozny,
John Langford:
An iterative method for multi-class cost-sensitive learning.
KDD 2004: 3-11 |
26 | EE | Arindam Banerjee,
John Langford:
An objective evaluation criterion for clustering.
KDD 2004: 515-520 |
25 | EE | Peter Grünwald,
John Langford:
Suboptimal behaviour of Bayes and MDL in classification under misspecification
CoRR math.ST/0406221: (2004) |
24 | EE | Luis von Ahn,
Manuel Blum,
John Langford:
Telling humans and computers apart automatically.
Commun. ACM 47(2): 56-60 (2004) |
23 | EE | Alina Beygelzimer,
Varsha Dani,
Thomas P. Hayes,
John Langford:
Reductions Between Classification Tasks
Electronic Colloquium on Computational Complexity (ECCC)(077): (2004) |
22 | EE | John Langford,
David A. McAllester:
Computable Shell Decomposition Bounds.
Journal of Machine Learning Research 5: 529-547 (2004) |
2003 |
21 | EE | Sham Kakade,
Michael J. Kearns,
John Langford,
Luis E. Ortiz:
Correlated equilibria in graphical games.
ACM Conference on Electronic Commerce 2003: 42-47 |
20 | EE | Avrim Blum,
John Langford:
PAC-MDL Bounds.
COLT 2003: 344-357 |
19 | EE | Luis von Ahn,
Manuel Blum,
Nicholas J. Hopper,
John Langford:
CAPTCHA: Using Hard AI Problems for Security.
EUROCRYPT 2003: 294-311 |
18 | EE | Bianca Zadrozny,
John Langford,
Naoki Abe:
Cost-Sensitive Learning by Cost-Proportionate Example Weighting.
ICDM 2003: 435- |
17 | | Sham Kakade,
Michael J. Kearns,
John Langford:
Exploration in Metric State Spaces.
ICML 2003: 306-312 |
16 | EE | John Langford,
Avrim Blum:
Microchoice Bounds and Self Bounding Learning Algorithms.
Machine Learning 51(2): 165-179 (2003) |
2002 |
15 | EE | Nicholas J. Hopper,
John Langford,
Luis von Ahn:
Provably Secure Steganography.
CRYPTO 2002: 77-92 |
14 | | Sham Kakade,
John Langford:
Approximately Optimal Approximate Reinforcement Learning.
ICML 2002: 267-274 |
13 | | John Langford:
Combining Trainig Set and Test Set Bounds.
ICML 2002: 331-338 |
12 | | John Langford,
Martin Zinkevich,
Sham Kakade:
Competitive Analysis of the Explore/Exploit Tradeoff.
ICML 2002: 339-346 |
11 | EE | John Langford,
John Shawe-Taylor:
PAC-Bayes & Margins.
NIPS 2002: 423-430 |
2001 |
10 | | John Langford,
Matthias Seeger,
Nimrod Megiddo:
An Improved Predictive Accuracy Bound for Averaging Classifiers.
ICML 2001: 290-297 |
9 | EE | John Langford,
Rich Caruana:
(Not) Bounding the True Error.
NIPS 2001: 809-816 |
8 | EE | Sebastian Thrun,
John Langford,
Vandi Verma:
Risk Sensitive Particle Filters.
NIPS 2001: 961-968 |
2000 |
7 | | John Langford,
David A. McAllester:
Computable Shell Decomposition Bounds.
COLT 2000: 25-34 |
6 | | Joseph O'Sullivan,
John Langford,
Rich Caruana,
Avrim Blum:
FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness.
ICML 2000: 703-710 |
1999 |
5 | EE | Avrim Blum,
Adam Kalai,
John Langford:
Beating the Hold-Out: Bounds for K-fold and Progressive Cross-Validation.
COLT 1999: 203-208 |
4 | EE | John Langford,
Avrim Blum:
Microchoice Bounds and Self Bounding Learning Algorithms.
COLT 1999: 209-214 |
3 | | Avrim Blum,
John Langford:
Probabilistic Planning in the Graphplan Framework.
ECP 1999: 319-332 |
2 | | Sebastian Thrun,
John Langford,
Dieter Fox:
Monte Carlo Hidden Markov Models: Learning Non-Parametric Models of Partially Observable Stochastic Processes.
ICML 1999: 415-424 |
1998 |
1 | EE | Avrim Blum,
Carl Burch,
John Langford:
On Learning Monotone Boolean Functions.
FOCS 1998: 408-415 |