| 2008 |
| 28 | EE | Tom Fawcett:
PRIE: a system for generating rulelists to maximize ROC performance.
Data Min. Knowl. Discov. 17(2): 207-224 (2008) |
| 27 | EE | Tom Fawcett:
Data mining with cellular automata.
SIGKDD Explorations 10(1): 32-39 (2008) |
| 2007 |
| 26 | EE | Tom Fawcett,
Alexandru Niculescu-Mizil:
PAV and the ROC convex hull.
Machine Learning 68(1): 97-106 (2007) |
| 2006 |
| 25 | EE | Tom Fawcett:
An introduction to ROC analysis.
Pattern Recognition Letters 27(8): 861-874 (2006) |
| 24 | EE | Tom Fawcett:
ROC graphs with instance-varying costs.
Pattern Recognition Letters 27(8): 882-891 (2006) |
| 2005 |
| 23 | EE | Tom Fawcett,
Peter A. Flach:
A Response to Webb and Ting's On the Application of ROC Analysis to Predict Classification Performance Under Varying Class Distributions.
Machine Learning 58(1): 33-38 (2005) |
| 2004 |
| 22 | EE | Tom Fawcett:
"In vivo" spam filtering: A challenge problem for data mining
CoRR cs.AI/0405007: (2004) |
| 21 | EE | Nada Lavrac,
Hiroshi Motoda,
Tom Fawcett,
Robert Holte,
Pat Langley,
Pieter W. Adriaans:
Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving.
Machine Learning 57(1-2): 13-34 (2004) |
| 20 | EE | Nada Lavrac,
Hiroshi Motoda,
Tom Fawcett:
Editorial: Data Mining Lessons Learned.
Machine Learning 57(1-2): 5-11 (2004) |
| 2003 |
| 19 | | Tom Fawcett,
Nina Mishra:
Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA
AAAI Press 2003 |
| 18 | EE | Tom Fawcett:
"In vivo" spam filtering: a challenge problem for KDD.
SIGKDD Explorations 5(2): 140-148 (2003) |
| 2001 |
| 17 | EE | Tom Fawcett:
Using Rule Sets to Maximize ROC Performance.
ICDM 2001: 131-138 |
| 16 | | Foster J. Provost,
Tom Fawcett:
Robust Classification for Imprecise Environments.
Machine Learning 42(3): 203-231 (2001) |
| 2000 |
| 15 | EE | Foster J. Provost,
Tom Fawcett:
Robust Classification for Imprecise Environments
CoRR cs.LG/0009007: (2000) |
| 1999 |
| 14 | EE | Tom Fawcett,
Foster J. Provost:
Activity Monitoring: Noticing Interesting Changes in Behavior.
KDD 1999: 53-62 |
| 1998 |
| 13 | | Foster J. Provost,
Tom Fawcett:
Robust Classification Systems for Imprecise Environments.
AAAI/IAAI 1998: 706-713 |
| 12 | | Foster J. Provost,
Tom Fawcett,
Ron Kohavi:
The Case against Accuracy Estimation for Comparing Induction Algorithms.
ICML 1998: 445-453 |
| 11 | | Tom Fawcett,
Ira J. Haimowitz,
Foster J. Provost,
Salvatore J. Stolfo:
AI Approaches to Fraud Detection and Risk Management.
AI Magazine 19(2): 107-108 (1998) |
| 1997 |
| 10 | | Foster J. Provost,
Tom Fawcett:
Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions.
KDD 1997: 43-48 |
| 9 | | Tom Fawcett,
Foster J. Provost:
Adaptive Fraud Detection.
Data Min. Knowl. Discov. 1(3): 291-316 (1997) |
| 1996 |
| 8 | | Tom Fawcett,
Foster J. Provost:
Combining Data Mining and Machine Learning for Effective User Profiling.
KDD 1996: 8-13 |
| 7 | | Tom Fawcett:
Knowledge-Based Feature Discovery for Evaluation Functions.
Computational Intelligence 12: 42-64 (1996) |
| 1992 |
| 6 | | Tom Fawcett,
Paul E. Utgoff:
Automatic Feature Generation for Problem Solving Systems.
ML 1992: 144-153 |
| 5 | | John Vittal,
Bernard Silver,
William J. Frawley,
Glenn A. Iba,
Tom Fawcett,
Susan Dusseault,
John Doleac:
Intelligent and Cooperative Information Systems Meet Machine Learning.
Int. J. Cooperative Inf. Syst. 2(2): 347-362 (1992) |
| 1991 |
| 4 | | James P. Callan,
Tom Fawcett,
Edwina L. Rissland:
CABOT: An Adaptive Approach to Case-Based Search.
IJCAI 1991: 803-809 |
| 3 | | Tom Fawcett,
Paul E. Utgoff:
A Hybrid Method for Feature Generation.
ML 1991: 137-141 |
| 2 | | John Vittal,
Bernard Silver,
William J. Frawley,
Glenn A. Iba,
Tom Fawcett,
Susan Dusseault,
John Doleac:
A Framework for Cooperative Adaptable Information Systems.
The Next Generation of Information Systems 1991: 169-184 |
| 1989 |
| 1 | | Tom Fawcett:
Learning from Plausible Explanations.
ML 1989: 37-39 |