dblp.uni-trier.dewww.uni-trier.de

Ross D. Shachter

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2008
37EEDebarun Bhattacharjya, Ross D. Shachter: Sensitivity analysis in decision circuits. UAI 2008: 34-42
2005
36EEGeorge C. Scott, Ross D. Shachter: Individualizing generic decision models using assessments as evidence. Journal of Biomedical Informatics 38(4): 281-297 (2005)
2004
35 Elizabeth S. Burnside, Daniel L. Rubin, Ross D. Shachter: Improving a Bayesian network's ability to predict the probability of malignancy of microcalcifications on mammography. CARS 2004: 1021-1026
2001
34EEDaniel G. Shapiro, Pat Langley, Ross D. Shachter: Using background knowledge to speed reinforcement learning in physical agents. Agents 2001: 254-261
1999
33EERoss D. Shachter: Efficient Value of Information Computation. UAI 1999: 594-601
1998
32EEMark A. Peot, Ross D. Shachter: Learning From What You Don't Observe. UAI 1998: 439-446
31EERoss D. Shachter: Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams). UAI 1998: 480-487
1996
30EERoss D. Shachter, Marvin Mandelbaum: A Measure of Decision Flexibility. UAI 1996: 485-491
1995
29EEDavid Heckerman, Ross D. Shachter: A Definition and Graphical Representation for Causality. UAI 1995: 262-273
28EETom Chávez, Ross D. Shachter: Decision Flexibility. UAI 1995: 77-86
27 David Heckerman, Ross D. Shachter: Decision-Theoretic Foundations for Causal Reasoning. J. Artif. Intell. Res. (JAIR) 3: 405-430 (1995)
1994
26EEAdriano Azevedo-Filho, Ross D. Shachter: Laplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables. UAI 1994: 28-36
25EEDavid Heckerman, Ross D. Shachter: A Decision-based View of Causality. UAI 1994: 302-310
24EEWilliam B. Poland, Ross D. Shachter: Three Approaches to Probability Model Selection. UAI 1994: 478-483
23EERoss D. Shachter, Stig K. Andersen, Peter Szolovits: Global Conditioning for Probabilistic Inference in Belief Networks. UAI 1994: 514-522
1993
22EEWilliam B. Poland, Ross D. Shachter: Mixtures of Gaussians and Minimum Relative Entropy Techniques for Modeling Continuous Uncertainties. UAI 1993: 183-190
21EERoss D. Shachter, Pierre Ndilikilikesha: Using Potential Influence Diagrams for Probabilistic Inference and Decision Making. UAI 1993: 383-390
20EEHarold P. Lehmann, Ross D. Shachter: End-User Construction of Influence Diagrams for Bayesian Statistics. UAI 1993: 48-54
1992
19EEBrian Y. Chan, Ross D. Shachter: Structural Controllability and Observability in Influence Diagrams. UAI 1992: 25-32
18EERoss D. Shachter, Mark A. Peot: Decision Making Using Probabilistic Inference Methods. UAI 1992: 276-283
1991
17EERoss D. Shachter: A Graph-Based Inference Method for Conditional Independence. UAI 1991: 353-360
16 Mark A. Peot, Ross D. Shachter: Fusion and Propagation with Multiple Observations in Belief Networks. Artif. Intell. 48(3): 299-318 (1991)
1990
15 Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal, John F. Lemmer: UAI '88: Proceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence North-Holland 1990
14 Max Henrion, Ross D. Shachter, Laveen N. Kanal, John F. Lemmer: UAI '89: Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence North-Holland 1990
13 Ross D. Shachter, Bruce D'Ambrosio, Brendan Del Favero: Symbolic Probabilistic Inference in Belief Networks. AAAI 1990: 126-131
12EERoss D. Shachter, Stig K. Andersen, Kim-Leng Poh: Directed reduction algorithms and decomposable graphs. UAI 1990: 197-208
1989
11EERoss D. Shachter: Evidence Absorption and Propagation through Evidence Reversals. UAI 1989: 173-190
10EERoss D. Shachter, Mark A. Peot: Simulation Approaches to General Probabilistic Inference on Belief Networks. UAI 1989: 221-234
1988
9EERoss D. Shachter: A linear approximation method for probabilistic inference. UAI 1988: 93-104
8 Ross D. Shachter, David M. Eddy, Vic Hasselblad, Robert Wolpert: A heuristic Bayesian approach to knowledge acquisition: Application to analysis of tissue-type plasminogen activator. Int. J. Approx. Reasoning 2(3): 342 (1988)
7 Ross D. Shachter: Efficient inference on generalized fault diagrams. Int. J. Approx. Reasoning 2(3): 342 (1988)
1987
6EERoss D. Shachter, David M. Eddy, Vic Hasselblad, Robert Wolpert: A Heuristic Bayesian Approach to Knowledge Acquisition: Application to the Analysis of Tissue-Type Plasminogen Activator. UAI 1987: 183-190
5EERoss D. Shachter, Leonard J. Bertrand: Efficient Inference on Generalized Fault Diagrams. UAI 1987: 325-332
4 Ross D. Shachter, David Heckerman: Thinking Backward for Knowledge Acquisition. AI Magazine 8(3): 55-61 (1987)
1986
3EERoss D. Shachter: DAVID: influence diagram processing system for the macintosh. UAI 1986: 191-196
2EERoss D. Shachter, David Heckerman: A backwards view for assessment. UAI 1986: 317-324
1985
1EERoss D. Shachter: Intelligent Probabilistic Inference. UAI 1985: 371-382

Coauthor Index

1Stig K. Andersen [12] [23]
2Adriano Azevedo-Filho [26]
3Leonard J. Bertrand [5]
4Debarun Bhattacharjya [37]
5Elizabeth S. Burnside [35]
6Brian Y. Chan [19]
7Tom Chávez [28]
8Bruce D'Ambrosio [13]
9David M. Eddy [6] [8]
10Brendan Del Favero [13]
11Vic Hasselblad [6] [8]
12David Heckerman [2] [4] [25] [27] [29]
13Max Henrion [14]
14Laveen N. Kanal [14] [15]
15Pat Langley [34]
16Harold P. Lehmann [20]
17John F. Lemmer [14] [15]
18Tod S. Levitt [15]
19Marvin Mandelbaum [30]
20Pierre Ndilikilikesha [21]
21Mark A. Peot [10] [16] [18] [32]
22Kim-Leng Poh [12]
23William B. Poland [22] [24]
24Daniel L. Rubin [35]
25George C. Scott [36]
26Daniel G. Shapiro [34]
27Peter Szolovits [23]
28Robert Wolpert [6] [8]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)