2009 | ||
---|---|---|
113 | EE | Masahiro Kimura, Kazumi Saito, Hiroshi Motoda: Blocking links to minimize contamination spread in a social network. TKDD 3(2): (2009) |
2008 | ||
112 | Masahiro Kimura, Kazumi Saito, Hiroshi Motoda: Minimizing the Spread of Contamination by Blocking Links in a Network. AAAI 2008: 1175-1180 | |
111 | EE | Kazumi Saito, Masahiro Kimura, Hiroshi Motoda: Effective Visualization of Information Diffusion Process over Complex Networks. ECML/PKDD (2) 2008: 326-341 |
110 | EE | Masahiro Kimura, Kazumasa Yamakawa, Kazumi Saito, Hiroshi Motoda: Community analysis of influential nodes for information diffusion on a social network. IJCNN 2008: 1358-1363 |
109 | EE | Masahiro Kimura, Kazumi Saito, Hiroshi Motoda: Solving the Contamination Minimization Problem on Networks for the Linear Threshold Model. PRICAI 2008: 977-984 |
108 | EE | Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda: DryadeParent, An Efficient and Robust Closed Attribute Tree Mining Algorithm. IEEE Trans. Knowl. Data Eng. 20(3): 300-320 (2008) |
107 | EE | Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, Dan Steinberg: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1): 1-37 (2008) |
2007 | ||
106 | EE | Takashi Washio, Hiroshi Motoda: Communicability Criteria of Law Equations Discovery. Computational Discovery of Scientific Knowledge 2007: 98-119 |
105 | EE | Hiroshi Motoda: Pattern Discovery from Graph-Structured Data - A Data Mining Perspective. IEA/AIE 2007: 12-22 |
104 | EE | Yang Sok Kim, Byeong Ho Kang, Paul Compton, Hiroshi Motoda: Search engine retrieval of changing information. WWW 2007: 1195-1196 |
103 | EE | Takashi Washio, Koutarou Nakanishi, Hiroshi Motoda: A Classification Method Based on Subspace Clustering and Association Rules. New Generation Comput. 25(3): 235-245 (2007) |
2006 | ||
102 | EE | Hiroshi Motoda: What Can We Do with Graph-Structured Data? - A Data Mining Perspective. Australian Conference on Artificial Intelligence 2006: 1-2 |
101 | EE | Kenta Fukata, Takashi Washio, Hiroshi Motoda: A Method to Search ARX Model Orders and Its Application to Sales Dynamics Analysis. ICDM Workshops 2006: 590-595 |
100 | EE | Takashi Washio, Yasuo Shinnou, Katsutoshi Yada, Hiroshi Motoda, Takashi Okada: Analysis on a Relation Between Enterprise Profit and Financial State by Using Data Mining Techniques. JSAI 2006: 305-316 |
99 | EE | Phu Chien Nguyen, Kouzou Ohara, Akira Mogi, Hiroshi Motoda, Takashi Washio: Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction. PAKDD 2006: 390-399 |
98 | EE | Kiyoto Takabayashi, Phu Chien Nguyen, Kouzou Ohara, Hiroshi Motoda, Takashi Washio: Extracting Discriminative Patterns from Graph Structured Data Using Constrained Search. PKAW 2006: 64-74 |
97 | EE | Toshiko Wakaki, Hiroyuki Itakura, Masaki Tamura, Hiroshi Motoda, Takashi Washio: A study on rough set-aided feature selection for automatic web-page classification. Web Intelligence and Agent Systems 4(4): 431-441 (2006) |
2005 | ||
96 | Shusaku Tsumoto, Takahira Yamaguchi, Masayuki Numao, Hiroshi Motoda: Active Mining, Second International Workshop, AM 2003, Maebashi, Japan, October 28, 2003, Revised Selected Papers Springer 2005 | |
95 | Achim G. Hoffmann, Hiroshi Motoda, Tobias Scheffer: Discovery Science, 8th International Conference, DS 2005, Singapore, October 8-11, 2005, Proceedings Springer 2005 | |
94 | EE | Takashi Washio, Fuminori Adachi, Hiroshi Motoda: SCALETRACK: A System to Discover Dynamic Law Equations Containing Hidden States and Chaos. Discovery Science 2005: 253-266 |
93 | EE | Alexandre Termier, Marie-Christine Rousset, Michèle Sebag, Kouzou Ohara, Takashi Washio, Hiroshi Motoda: Efficient Mining of High Branching Factor Attribute Trees. ICDM 2005: 785-788 |
92 | EE | Takashi Washio, Yuki Mitsunaga, Hiroshi Motoda: Mining Quantitative Frequent Itemsets Using Adaptive Density-Based Subspace Clustering. ICDM 2005: 793-796 |
91 | EE | Takashi Washio, Fuminori Adachi, Hiroshi Motoda: Discovering Time Differential Law Equations Containing Hidden State Variables and Chaotic Dynamics. IJCAI 2005: 1642-1644 |
90 | EE | Takashi Washio, Koutarou Nakanishi, Hiroshi Motoda, Takashi Okada: Mutagenicity Risk Analysis by Using Class Association Rules. JSAI Workshops 2005: 436-445 |
89 | EE | Phu Chien Nguyen, Kouzou Ohara, Hiroshi Motoda, Takashi Washio: Cl-GBI: A Novel Approach for Extracting Typical Patterns from Graph-Structured Data. PAKDD 2005: 639-649 |
88 | EE | Takashi Washio, Koutarou Nakanishi, Hiroshi Motoda: Deriving Class Association Rules Based on Levelwise Subspace Clustering. PKDD 2005: 692-700 |
87 | EE | Kenichi Yoshida, Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Teruaki Homma, Akihiro Nakashima, Hiromitsu Fujikawa, Katsuyuki Yamazaki: Memory Management of Density-Based Spam Detector. SAINT 2005: 370-376 |
86 | EE | Takashi Washio, Atsushi Fujimoto, Hiroshi Motoda: A Framework of Numerical Basket Analysis. SAINT Workshops 2005: 340-343 |
85 | EE | Warodom Geamsakul, Tetsuya Yoshida, Kouzou Ohara, Hiroshi Motoda, Hideto Yokoi, Katsuhiko Takabayashi: Constructing a Decision Tree for Graph-Structured Data and its Applications. Fundam. Inform. 66(1-2): 131-160 (2005) |
84 | EE | Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: A General Framework for Mining Frequent Subgraphs from Labeled Graphs. Fundam. Inform. 66(1-2): 53-82 (2005) |
83 | EE | Takashi Washio, Hiroshi Motoda, Yuji Niwa: Enhancing the plausibility of law equation discovery through cross check among multiple scale-type-based models. J. Exp. Theor. Artif. Intell. 17(1-2): 129-143 (2005) |
82 | EE | Fuminori Adachi, Takashi Washio, Atsushi Fujimoto, Hiroshi Motoda, Hidemitsu Hanafusa: Multi-structure Information Retrieval Method Based on Transformation Invariance. New Generation Comput. 23(4): (2005) |
2004 | ||
81 | EE | Kouzou Ohara, Yukio Onishi, Noboru Babaguchi, Hiroshi Motoda: Constructive Inductive Learning Based on Meta-attributes. Discovery Science 2004: 142-154 |
80 | EE | Kenichi Yoshida, Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Teruaki Homma, Akihiro Nakashima, Hiromitsu Fujikawa, Katsuyuki Yamazaki: Density-based spam detector. KDD 2004: 486-493 |
79 | EE | Katsutoshi Yada, Hiroshi Motoda, Takashi Washio, Asuka Miyawaki: Consumer Behavior Analysis by Graph Mining Technique. KES 2004: 800-806 |
78 | EE | Amit Mandvikar, Huan Liu, Hiroshi Motoda: Compact Dual Ensembles for Active Learning. PAKDD 2004: 293-297 |
77 | EE | Phu Chien Nguyen, Takashi Washio, Kouzou Ohara, Hiroshi Motoda: Using a Hash-Based Method for Apriori-Based Graph Mining. PKDD 2004: 349-361 |
76 | EE | Huan Liu, Hiroshi Motoda, Lei Yu: A selective sampling approach to active feature selection. Artif. Intell. 159(1-2): 49-74 (2004) |
75 | EE | Tetsuya Yoshida, Takuya Wada, Hiroshi Motoda, Takashi Washio: Adaptive Ripple Down Rules method based on minimum description length principle. Intell. Data Anal. 8(3): 239-265 (2004) |
74 | EE | Nada Lavrac, Hiroshi Motoda, Tom Fawcett, Robert Holte, Pat Langley, Pieter W. Adriaans: Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving. Machine Learning 57(1-2): 13-34 (2004) |
73 | EE | Nada Lavrac, Hiroshi Motoda, Tom Fawcett: Editorial: Data Mining Lessons Learned. Machine Learning 57(1-2): 5-11 (2004) |
2003 | ||
72 | EE | Shusaku Tsumoto, Takahira Yamaguchi, Masayuki Numao, Hiroshi Motoda: Active Mining Project: Overview. Active Mining 2003: 1-10 |
71 | EE | Warodom Geamsakul, Tetsuya Yoshida, Kouzou Ohara, Hiroshi Motoda, Takashi Washio, Hideto Yokoi, Katsuhiko Takabayashi: Extracting Diagnostic Knowledge from Hepatitis Dataset by Decision Tree Graph-Based Induction. Active Mining 2003: 126-151 |
70 | EE | Warodom Geamsakul, Takashi Matsuda, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio: Performance Evaluation of Decision Tree Graph-Based Induction. Discovery Science 2003: 128-140 |
69 | EE | Fuminori Adachi, Takashi Washio, Hiroshi Motoda, Atsushi Fujimoto, Hidemitsu Hanafusa: Development of Generic Search Method Based on Transformation Invariance. ISMIS 2003: 486-495 |
68 | EE | Huan Liu, Lei Yu, Manoranjan Dash, Hiroshi Motoda: Active Feature Selection Using Classes. PAKDD 2003: 474-485 |
67 | EE | Warodom Geamsakul, Takashi Matsuda, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio: Classifier Construction by Graph-Based Induction for Graph-Structured Data. PAKDD 2003: 52-62 |
66 | Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Machine Learning 50(3): 321-354 (2003) | |
65 | EE | Takashi Washio, Hiroshi Motoda: State of the art of graph-based data mining. SIGKDD Explorations 5(1): 59-68 (2003) |
64 | Setsuo Arikawa, Koichi Furukawa, Shinichi Morishita, Hiroshi Motoda: Preface. Theor. Comput. Sci. 292(2): 343-344 (2003) | |
2002 | ||
63 | EE | Takashi Matsuda, Hiroshi Motoda, Tetsuya Yoshida, Takashi Washio: Mining Patterns from Structured Data by Beam-Wise Graph-Based Induction. Discovery Science 2002: 422-429 |
62 | EE | Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio: Adaptive Ripple Down Rules Method based on Minimum Description Length Principle. ICDM 2002: 530-537 |
61 | Huan Liu, Hiroshi Motoda, Lei Yu: Feature Selection with Selective Sampling. ICML 2002: 395-402 | |
60 | EE | Takuya Wada, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio: Extension of the RDR Method That Can Adapt to Environmental Changes and Acquire Knowledge from Both Experts and Data. PRICAI 2002: 218-227 |
59 | EE | Keisei Fujiwara, Tetsuya Yoshida, Hiroshi Motoda, Takashi Washio: Case Generation Method for Constructing an RDR Knowledge Base. PRICAI 2002: 228-237 |
58 | EE | Takashi Matsuda, Hiroshi Motoda, Tetsuya Yoshida, Takashi Washio: Knowledge Discovery from Structured Data by Beam-Wise Graph-Based Induction. PRICAI 2002: 255-264 |
57 | EE | Takashi Washio, Hiroshi Motoda: Toward the Discovery of First Principle Based Scientific Law Equations. Progress in Discovery Science 2002: 553-564 |
56 | EE | Takashi Matsuda, Hiroshi Motoda, Takashi Washio: Graph-based induction and its applications. Advanced Engineering Informatics 16(2): 135-143 (2002) |
55 | Huan Liu, Hiroshi Motoda: On Issues of Instance Selection. Data Min. Knowl. Discov. 6(2): 115-130 (2002) | |
54 | EE | Masahiro Terabe, Takashi Washio, Hiroshi Motoda, Osamu Katai, Tetsuo Sawaragi: Attribute Generation Based on Association Rules. Knowl. Inf. Syst. 4(3): 329-349 (2002) |
2001 | ||
53 | EE | Takashi Washio, Hiroshi Motoda, Yuji Niwa: Discovering Admissible Simultaneous Equation Models from Observed Data. ECML 2001: 539-551 |
52 | EE | Masahiro Terabe, Takashi Washio, Hiroshi Motoda: S3Bagging: Fast Classifier Induction Method with Subsampling and Bagging. IDA 2001: 177-186 |
51 | EE | Takayuki Ikeda, Takashi Washio, Hiroshi Motoda: Basket Analysis on Meningitis Data. JSAI Workshops 2001: 516-524 |
50 | EE | Takuya Wada, Hiroshi Motoda, Takashi Washio: Knowledge Acquisition from Both Human Expert and Data. PAKDD 2001: 550-561 |
49 | EE | Makoto Tsukada, Takashi Washio, Hiroshi Motoda: Automatic Web-Page Classification by Using Machine Learning Methods. Web Intelligence 2001: 303-313 |
48 | EE | Takuya Wada, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio: A Description Length-Based Decision Criterion for Default Knowledge in the Ripple Down Rules Method. Knowl. Inf. Syst. 3(2): 146-167 (2001) |
2000 | ||
47 | EE | Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio: Graph-Based Induction for General Graph Structured Data and Its Application to Chemical Compound Data. Discovery Science 2000: 99-111 |
46 | Takashi Washio, Hiroshi Motoda, Yuji Niwa: Enhancing the Plausibility of Law Equation Discovery. ICML 2000: 1127-1134 | |
45 | Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio: Extension of Graph-Based Induction for General Graph Structured Data. PAKDD 2000: 420-431 | |
44 | Manoranjan Dash, Huan Liu, Hiroshi Motoda: Consistency Based Feature Selection. PAKDD 2000: 98-109 | |
43 | EE | Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. PKDD 2000: 13-23 |
42 | Hiroshi Motoda, Setsuo Arikawa: Special Feature on Discovery Science. New Generation Comput. 18(1): 13-16 (2000) | |
1999 | ||
41 | EE | Manoranjan Dash, Huan Liu, Hiroshi Motoda: Feature Selection Using Consistency Measure. Discovery Science 1999: 319-320 |
40 | EE | Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda: Derivation of the Topology Structure from Massive Graph Data. Discovery Science 1999: 330-332 |
39 | EE | Takashi Matsuda, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio, Kohei Kumazawa, Naohide Arai: Graph-Based Induction for General Graph Structured Data. Discovery Science 1999: 340-342 |
38 | Takashi Washio, Hiroshi Motoda, Niwa Yuji: Discovering Admissible Model Equations from Observed Data Based on Scale-Types and Identity Constrains. IJCAI 1999: 772-779 | |
37 | EE | Masahiro Terabe, Osamu Katai, Tetsuo Sawaragi, Takashi Washio, Hiroshi Motoda: A Data Pre-processing Method Using Association Rules of Attributes for Improving Decision Tree. PAKDD 1999: 143-147 |
36 | EE | Hiroshi Motoda: Computer Assisted Discovery of First Principle Equations from Numeric Data (Abstract). PAKDD 1999: 2 |
35 | EE | Takuya Wada, Tadashi Horiuchi, Hiroshi Motoda, Takashi Washio: Characterization of Default Knowledge in Ripple Down Rules Method. PAKDD 1999: 284-295 |
34 | EE | Akihiro Inokuchi, Takashi Washio, Hiroshi Motoda, Kouhei Kumasawa, Naohide Arai: Basket Analysis for Graph Structured Data. PAKDD 1999: 420-431 |
1998 | ||
33 | Hing-Yan Lee, Hiroshi Motoda: PRICAI'98, Topics in Artificial Intelligence, 5th Pacific Rim International Conference on Artificial Intelligence, Singapore, November 22-27, 1998, Proceedings Springer 1998 | |
32 | Setsuo Arikawa, Hiroshi Motoda: Discovery Science, First International Conference, DS '98, Fukuoka, Japan, December 14-16, 1998, Proceedings Springer 1998 | |
31 | Takashi Washio, Hiroshi Motoda: Discovering Admissible Simultaneous Equations of Large Scale Systems. AAAI/IAAI 1998: 189-196 | |
30 | EE | Takashi Washio, Hiroshi Motoda: Development of SDS2: Smart Discovery System for Simultaneous Equation Systems. Discovery Science 1998: 352-363 |
29 | Huan Liu, Hiroshi Motoda, Manoranjan Dash: A Monotonic Measure for Optimal Feature Selection. ECML 1998: 101-106 | |
28 | Takashi Washio, Hiroshi Motoda: Mining Association Rules for Estimation and Prediction. PAKDD 1998: 417-419 | |
27 | EE | Hiroshi Motoda, Kenichi Yoshida: Machine Learning Techniques to Make Computers Easier to Use. Artif. Intell. 103(1-2): 295-321 (1998) |
26 | Huan Liu, Hiroshi Motoda: Guest Editors' Introduction: Feature Transformation and Subset Selection. IEEE Intelligent Systems 13(2): 26-28 (1998) | |
25 | EE | Hing-Yan Lee, Hongjun Lu, Hiroshi Motoda: Knowledge discovery and data mining. Knowl.-Based Syst. 10(7): 401-402 (1998) |
24 | EE | Takashi Washio, Hiroshi Motoda: Discovery of first-principle equations based on scale-type-based and data-driven reasoning. Knowl.-Based Syst. 10(7): 403-411 (1998) |
1997 | ||
23 | Hiroshi Motoda, Kenichi Yoshida: Machine Learning Techniques to Make Computers Easier to Use. IJCAI 1997: 1622-1631 | |
22 | Takashi Washio, Hiroshi Motoda: Discovering Admissible Models of Complex Systems Based on Scale-Types and Idemtity Constraints. IJCAI (2) 1997: 810-819 | |
21 | EE | Byeong Ho Kang, Kenichi Yoshida, Hiroshi Motoda, Paul Compton: Help Desk System with Intelligent Interface. Applied Artificial Intelligence 11(7-8): 611-631 (1997) |
1996 | ||
20 | Takashi Washio, Hiroshi Motoda: A History-Oriented Envisioning Method. PRICAI 1996: 312-323 | |
19 | Shingo Nishioka, Atsuo Kawaguchi, Hiroshi Motoda: Process Labeled Kernel Profiling: A New Facility to Profile System Activities. USENIX Annual Technical Conference 1996: 295-306 | |
1995 | ||
18 | Kenichi Yoshida, Hiroshi Motoda: Tables, Graphs and Logic for Induction. Machine Intelligence 15 1995: 298-311 | |
17 | Atsuo Kawaguchi, Shingo Nishioka, Hiroshi Motoda: A Flash-Memory Based File System. USENIX Winter 1995: 155-164 | |
16 | EE | Kenichi Yoshida, Hiroshi Motoda: CLIP: Concept Learning from Inference Patterns. Artif. Intell. 75(1): 63-92 (1995) |
15 | EE | Riichiro Mizoguchi, Hiroshi Motoda: Expert Systems Research in Japan. IEEE Expert 10(4): 14-23 (1995) |
1994 | ||
14 | N. Hari Narayanan, Masaki Suwa, Hiroshi Motoda: How Things Appear to Work: Predicting Behaviors from Device Diagrams. AAAI 1994: 1161-1167 | |
13 | Masaki Suwa, Hiroshi Motoda: Learning Perceptually Chunked Macro Operators. Machine Intelligence 13 1994: 419-440 | |
12 | Masaki Suwa, Hiroshi Motoda: PCLEARN: A Computer Model for Learning Perceptual Chunks. AI Commun. 7(2): 114-125 (1994) | |
11 | EE | Kenichi Yoshida, Hiroshi Motoda, Nitin Indurkhya: Graph-based induction as a unified learning framework. Appl. Intell. 4(3): 297-316 (1994) |
1993 | ||
10 | Makoto Iwayama, Nitin Indurkhya, Hiroshi Motoda: A New Algorithm for Automatic Configuration of Hidden Markov Models. ALT 1993: 237-250 | |
9 | Kenichi Yoshida, Hiroshi Motoda, Nitin Indurkhya: Unifying Learning Methods by Colored Digraphs. ALT 1993: 342-355 | |
8 | Masaki Suwa, Hiroshi Motoda: A Perceptual Criterion for Visually Controlling Learning. ALT 1993: 356-369 | |
7 | Masaki Suwa, Hiroshi Motoda: On dealing with dynamic utility of learned knowledge. Machine Intelligence 14 1993: 113- | |
1991 | ||
6 | EE | Hiroshi Motoda, Riichiro Mizoguchi, John H. Boose, Brian R. Gaines: Knowledge Acquisition for Knowledge-Based Systems. IEEE Expert 6(4): 53-64 (1991) |
5 | EE | Atsuo Kawaguchi, Hiroshi Motoda, Riichiro Mizoguchi: Interview-Based Knowledge Acquisition Using Dynamic Analysis. IEEE Expert 6(5): 47-60 (1991) |
1990 | ||
4 | EE | Hiroshi Motoda: The Current Status of Expert System Development and Related Technologies in Japan. IEEE Expert 5(4): 3-11 (1990) |
1988 | ||
3 | Akito Sakurai, Hiroshi Motoda: Proving Definite Clauses without Explicit Use of Inductions. LP 1988: 11-26 | |
1984 | ||
2 | Hiroshi Motoda, Naoyuki Yamada, Kenichi Yoshida: A Knowledge based System for Plant Diagnosis. FGCS 1984: 582-588 | |
1983 | ||
1 | Naoyuki Yamada, Hiroshi Motoda: A Diagnosis Method of Dynamic System Using the Knowledge on System Description. IJCAI 1983: 225-229 |