2009 | ||
---|---|---|
69 | EE | Ken-ichi Fukui, Kazuhisa Sato, Junichiro Mizusaki, Kazumi Saito, Masahiro Kimura, Masayuki Numao: Growth Analysis of Neighbor Network for Evaluation of Damage Progress. PAKDD 2009: 933-940 |
68 | EE | Kazumi Saito, Takeshi Yamada, Kazuhiro Kazama: The k-Dense Method to Extract Communities from Complex Networks. Mining Complex Data 2009: 243-257 |
67 | EE | Masahiro Kimura, Kazumi Saito, Hiroshi Motoda: Blocking links to minimize contamination spread in a social network. TKDD 3(2): (2009) |
2008 | ||
66 | Masahiro Kimura, Kazumi Saito, Hiroshi Motoda: Minimizing the Spread of Contamination by Blocking Links in a Network. AAAI 2008: 1175-1180 | |
65 | EE | Kazumi Saito, Masahiro Kimura, Hiroshi Motoda: Effective Visualization of Information Diffusion Process over Complex Networks. ECML/PKDD (2) 2008: 326-341 |
64 | EE | Masahiro Kimura, Kazumasa Yamakawa, Kazumi Saito, Hiroshi Motoda: Community analysis of influential nodes for information diffusion on a social network. IJCNN 2008: 1358-1363 |
63 | EE | Kazumi Saito, Nobuaki Mutoh, Tetsuo Ikeda, Toshinao Goda, Kazuki Mochizuki: Improving Search Efficiency of Incremental Variable Selection by Using Second-Order Optimal Criterion. KES (3) 2008: 41-49 |
62 | EE | Kazumi Saito, Ryohei Nakano, Masahiro Kimura: Prediction of Information Diffusion Probabilities for Independent Cascade Model. KES (3) 2008: 67-75 |
61 | EE | Masahiro Kimura, Kazumi Saito, Hiroshi Motoda: Solving the Contamination Minimization Problem on Networks for the Linear Threshold Model. PRICAI 2008: 977-984 |
60 | EE | Tomoharu Iwata, Kazumi Saito, Takeshi Yamada: Recommendation Method for Improving Customer Lifetime Value. IEEE Trans. Knowl. Data Eng. 20(9): 1254-1263 (2008) |
59 | EE | Akinori Fujino, Naonori Ueda, Kazumi Saito: Semisupervised Learning for a Hybrid Generative/Discriminative Classifier based on the Maximum Entropy Principle. IEEE Trans. Pattern Anal. Mach. Intell. 30(3): 424-437 (2008) |
2007 | ||
58 | Masahiro Kimura, Kazumi Saito, Ryohei Nakano: Extracting Influential Nodes for Information Diffusion on a Social Network. AAAI 2007: 1371-1376 | |
57 | EE | Kazumi Saito, Pat Langley: Quantitative Revision of Scientific Models. Computational Discovery of Scientific Knowledge 2007: 120-137 |
56 | EE | Ken-ichi Fukui, Kazuhisa Sato, Junichiro Mizusaki, Kazumi Saito, Masayuki Numao: Combining Burst Extraction Method and Sequence-Based SOM for Evaluation of Fracture Dynamics in Solid Oxide Fuel Cell. ICTAI (2) 2007: 193-196 |
55 | EE | Akinori Fujino, Naonori Ueda, Kazumi Saito: Semi-Supervised Learning for Multi-Component Data Classification. IJCAI 2007: 2754-2759 |
54 | EE | Pablo A. Estévez, Pablo A. Vera, Kazumi Saito: Selecting the Most Influential Nodes in Social Networks. IJCNN 2007: 2397-2402 |
53 | EE | Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao: Interpretable Likelihood for Vector Representable Topic. KES (3) 2007: 202-209 |
52 | EE | Manabu Kimura, Kazumi Saito, Naonori Ueda: Pivot Learning for Efficient Similarity Search. KES (3) 2007: 227-234 |
51 | EE | Kazumi Saito, Ryohei Nakano, Masahiro Kimura: Prediction of Link Attachments by Estimating Probabilities of Information Propagation. KES (3) 2007: 235-242 |
50 | EE | Tomoharu Iwata, Kazumi Saito, Takeshi Yamada: Modeling user behavior in recommender systems based on maximum entropy. WWW 2007: 1281-1282 |
49 | EE | Akinori Fujino, Naonori Ueda, Kazumi Saito: A hybrid generative/discriminative approach to text classification with additional information. Inf. Process. Manage. 43(2): 379-392 (2007) |
48 | EE | Tomoharu Iwata, Kazumi Saito, Naonori Ueda, Sean Stromsten, Thomas L. Griffiths, Joshua B. Tenenbaum: Parametric Embedding for Class Visualization. Neural Computation 19(9): 2536-2556 (2007) |
47 | EE | Kazumi Saito, Ryohei Nakano: Bidirectional clustering of weights for neural networks with common weights. Systems and Computers in Japan 38(10): 46-57 (2007) |
2006 | ||
46 | EE | Tomoharu Iwata, Kazumi Saito, Naonori Ueda: Visual nonlinear discriminant analysis for classifier design. ESANN 2006: 283-288 |
45 | EE | Kazumi Saito, Takeshi Yamada: Extracting Communities from Complex Networks by the k-dense Method. ICDM Workshops 2006: 300-304 |
44 | EE | Tomoharu Iwata, Kazumi Saito, Takeshi Yamada: Recommendation method for extending subscription periods. KDD 2006: 574-579 |
43 | EE | Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao: Visualization Architecture Based on SOM for Two-Class Sequential Data. KES (2) 2006: 929-936 |
42 | EE | Masahiro Kimura, Kazumi Saito: Approximate Solutions for the Influence Maximization Problem in a Social Network. KES (2) 2006: 937-944 |
41 | EE | Kazumi Saito, Ryohei Nakano: Improving Convergence Performance of PageRank Computation Based on Step-Length Calculation Approach. KES (2) 2006: 945-952 |
40 | EE | Yusuke Tanahashi, Kazumi Saito, Daisuke Kitakoshi, Ryohei Nakano: Finding Nominally Conditioned Multivariate Polynomials Using a Four-Layer Perceptron Having Shared Weights. KES (2) 2006: 969-976 |
39 | EE | Masahiro Kimura, Kazumi Saito: Tractable Models for Information Diffusion in Social Networks. PKDD 2006: 259-271 |
38 | EE | Naonori Ueda, Kazumi Saito: Parametric mixture model for multitopic text. Systems and Computers in Japan 37(2): 56-66 (2006) |
2005 | ||
37 | Akinori Fujino, Naonori Ueda, Kazumi Saito: A Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design. AAAI 2005: 764-769 | |
36 | EE | Akinori Fujino, Naonori Ueda, Kazumi Saito: A Classifier Design Based on Combining Multiple Components by Maximum Entropy Principle. AIRS 2005: 423-438 |
35 | EE | Yusuke Tanahashi, Kazumi Saito, Ryohei Nakano: Model Selection and Weight Sharing of Multi-layer Perceptrons. KES (4) 2005: 716-722 |
34 | EE | Masahiro Kimura, Kazumi Saito, Kazuhiro Kazama, Shin-ya Sato: Detecting Search Engine Spam from a Trackback Network in Blogspace. KES (4) 2005: 723-729 |
33 | EE | Ken-ichi Fukui, Kazumi Saito, Masahiro Kimura, Masayuki Numao: Visualizing Dynamics of the Hot Topics Using Sequence-Based Self-organizing Maps. KES (4) 2005: 745-751 |
32 | EE | Pablo A. Estévez, Cristián J. Figueroa, Kazumi Saito: Cross-entropy embedding of high-dimensional data using the neural gas model. Neural Networks 18(5-6): 727-737 (2005) |
2004 | ||
31 | EE | Yusuke Tanahashi, Kazumi Saito, Ryohei Nakano: Piecewise Multivariate Polynomials Using a Four-Layer Perceptron. KES 2004: 602-608 |
30 | EE | Yuji Kaneda, Naonori Ueda, Kazumi Saito: Extended Parametric Mixture Model for Robust Multi-labeled Text Categorization. KES 2004: 616-623 |
29 | EE | Tomoharu Iwata, Kazumi Saito: Visualisation of Anomaly Using Mixture Model. KES 2004: 624-631 |
28 | EE | Tomoharu Iwata, Kazumi Saito, Naonori Ueda, Sean Stromsten, Thomas L. Griffiths, Joshua B. Tenenbaum: Parametric Embedding for Class Visualization. NIPS 2004 |
27 | EE | Masahiro Kimura, Kazumi Saito, Naonori Ueda: Modeling of growing networks with directional attachment and communities. Neural Networks 17(7): 975-988 (2004) |
26 | EE | Masahiro Kimura, Kazumi Saito, Naonori Ueda: Modeling network growth with directional attachment and communities. Systems and Computers in Japan 35(8): 1-11 (2004) |
2003 | ||
25 | EE | Dileep George, Kazumi Saito, Pat Langley, Stephen D. Bay, Kevin R. Arrigo: Discovering Ecosystem Models from Time-Series Data. Discovery Science 2003: 141-152 |
24 | EE | Kazumi Saito, Dileep George, Stephen D. Bay, Jeff Shrager: Inducing Biological Models from Temporal Gene Expression Data. Discovery Science 2003: 468-469 |
23 | EE | Masahiro Kimura, Kazumi Saito, Naonori Ueda: Modeling of growing networks with directional attachment and communities. ESANN 2003: 15-20 |
22 | Pat Langley, Dileep George, Stephen D. Bay, Kazumi Saito: Robust Induction of Process Models from Time-Series Data. ICML 2003: 432-439 | |
21 | Takeshi Yamada, Kazumi Saito, Naonori Ueda: Cross-Entropy Directed Embedding of Network Data. ICML 2003: 832-839 | |
2002 | ||
20 | EE | Kazumi Saito, Ryohei Nakano: Structuring Neural Networks through Bidirectional Clustering of Weights. Discovery Science 2002: 206-219 |
19 | EE | Kazumi Saito, Stephen D. Bay, Pat Langley: Revising Qualitative Models of Gene Regulation. Discovery Science 2002: 59-70 |
18 | EE | Naonori Ueda, Kazumi Saito: Single-shot detection of multiple categories of text using parametric mixture models. KDD 2002: 626-631 |
17 | EE | Naonori Ueda, Kazumi Saito: Parametric Mixture Models for Multi-Labeled Text. NIPS 2002: 721-728 |
16 | EE | Ryohei Nakano, Kazumi Saito: Discovering Polynomials to Fit Multivariate Data Having Numeric and Nominal Variables. Progress in Discovery Science 2002: 482-493 |
15 | EE | Kazumi Saito, Pat Langley: Discovering Empirical Laws of Web Dynamics. SAINT 2002: 168-175 |
14 | EE | Kazumi Saito, Ryohei Nakano: Extracting regression rules from neural networks. Neural Networks 15(10): 1279-1288 (2002) |
2001 | ||
13 | EE | Kazumi Saito, Pat Langley, Trond Grenager, Christopher Potter, Alicia Torregrosa, Steven A. Klooster: Computational Revision of Quantitative Scientific Models. Discovery Science 2001: 336-349 |
12 | EE | Ryohei Nakano, Kazumi Saito: Finding Polynomials to Fit Multivariate Data Having Numeric and Nominal Variables. IDA 2001: 258-267 |
2000 | ||
11 | EE | Kazumi Saito, Ryohei Nakano: Discovery of Nominally Conditioned Polynomials Using Neural Networks, Vector Quantizers and Decision Trees. Discovery Science 2000: 325-329 |
10 | Kazumi Saito, Ryohei Nakano: Discovery of Relevant Weights by Minimizing Cross-Validation Error. PAKDD 2000: 372-375 | |
9 | Kazumi Saito, Ryohei Nakano: Second-Order Learning Algorithm with Squared Penalty Term. Neural Computation 12(3): 709-729 (2000) | |
1999 | ||
8 | EE | Ryohei Nakano, Kazumi Saito: Discovery of a Set of Nominally Conditioned Polynomials. Discovery Science 1999: 287-298 |
1998 | ||
7 | EE | Ryohei Nakano, Kazumi Saito: Computational Characteristics of Law Discovery Using Neural Networks. Discovery Science 1998: 342-351 |
1997 | ||
6 | Kazumi Saito, Ryohei Nakano: Law Discovery using Neural Networks. IJCAI 1997: 1078-1083 | |
5 | EE | Kazumi Saito, Ryohei Nakano: Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer Neural Networks. Neural Computation 9(1): 123-141 (1997) |
1996 | ||
4 | EE | Kazumi Saito, Ryohei Nakano: Second-order Learning Algorithm with Squared Penalty Term. NIPS 1996: 627-633 |
1995 | ||
3 | Kazumi Saito, Ryohei Nakano: A Connectionist Approach to Numeric Law Discorvery. Machine Intelligence 15 1995: 315-327 | |
1994 | ||
2 | Kazumi Saito, Ryohei Nakano: Adaptive Concept Learning Algorithm. IFIP Congress (1) 1994: 294-299 | |
1993 | ||
1 | Kazumi Saito, Ryohei Nakano: A concept learning algorithm with adaptive search. Machine Intelligence 14 1993: 353- |