2008 | ||
---|---|---|
105 | Chi-Hoon Lee, Matthew R. G. Brown, Russell Greiner, Shaojun Wang, Albert Murtha: Constrained Classification on Structured Data. AAAI 2008: 1812-1813 | |
104 | Alejandro Isaza, Jieshan Lu, Vadim Bulitko, Russell Greiner: A Cover-Based Approach to Multi-Agent Moving Target Pursuit. AIIDE 2008 | |
103 | Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner: A Mixture Imputation-Boosted Collaborative Filter. FLAIRS Conference 2008: 312-316 | |
102 | EE | Ilya Levner, Russell Greiner, Hong Zhang: Supervised image segmentation via ground truth decomposition. ICIP 2008: 737-740 |
101 | EE | Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner: Using Imputation Techniques to Help Learn Accurate Classifiers. ICTAI (1) 2008: 437-444 |
100 | EE | Chi-Hoon Lee, Shaojun Wang, Albert Murtha, Matthew R. G. Brown, Russell Greiner: Segmenting Brain Tumors Using Pseudo-Conditional Random Fields. MICCAI (1) 2008: 359-366 |
99 | EE | Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu, Russell Greiner: Imputation-boosted collaborative filtering using machine learning classifiers. SAC 2008: 949-950 |
98 | EE | Alejandro Isaza, Csaba Szepesvári, Vadim Bulitko, Russell Greiner: Speeding Up Planning in Markov Decision Processes via Automatically Constructed Abstraction. UAI 2008: 306-314 |
97 | EE | Xiaoyuan Su, Taghi M. Khoshgoftaar, Russell Greiner: Imputed Neighborhood Based Collaborative Filtering. Web Intelligence 2008: 633-639 |
96 | EE | Tim Van Allen, Ajit Singh, Russell Greiner, Peter Hooper: Quantifying the uncertainty of a belief net response: Bayesian error-bars for belief net inference. Artif. Intell. 172(4-5): 483-513 (2008) |
95 | EE | Alona Fyshe, Yifeng Liu, Duane Szafron, Russell Greiner, Paul Lu: Improving subcellular localization prediction using text classification and the gene ontology. Bioinformatics 24(21): 2512-2517 (2008) |
94 | EE | Chi-Hoon Lee, Osmar R. Zaïane, Ho-Hyun Park, Jiayuan Huang, Russell Greiner: Clustering high dimensional data: A graph-based relaxed optimization approach. Inf. Sci. 178(23): 4501-4511 (2008) |
2007 | ||
93 | EE | Oliver Schulte, Wei Luo, Russell Greiner: Mind Change Optimal Learning of Bayes Net Structure. COLT 2007: 187-202 |
92 | EE | Yuhong Guo, Russell Greiner: Optimistic Active-Learning Using Mutual Information. IJCAI 2007: 823-829 |
91 | EE | David S. Wishart, Russell Greiner: Session Introduction. Pacific Symposium on Biocomputing 2007: 112-114 |
90 | EE | Xiaoyuan Su, Russell Greiner, Taghi M. Khoshgoftaar, Xingquan Zhu: Hybrid Collaborative Filtering Algorithms Using a Mixture of Experts. Web Intelligence 2007: 645-649 |
89 | EE | Lihong Li, Vadim Bulitko, Russell Greiner: Focus of Attention in Reinforcement Learning. J. UCS 13(9): 1246-1269 (2007) |
88 | EE | David S. Wishart, Dan Tzur, Craig Knox, Roman Eisner, Anchi Guo, Nelson Young, Dean Cheng, Kevin Jewell, David Arndt, Summit Sawhney, Chris Fung, Lisa Nikolai, Mike Lewis, Marie-Aude Coutouly, Ian J. Forsythe, Peter Tang, Savita Shrivastava, Kevin Jeroncic, Paul Stothard, Godwin Amegbey, David Block, David. D. Hau, James Wagner, Jessica Miniaci, Melisa Clements, Mulu Gebremedhin, Natalie Guo, Ying Zhang, Gavin E. Duggan, Glen D. MacInnis, Alim M. Weljie, Reza Dowlatabadi, Fiona Bamforth, Derrick Clive, Russell Greiner, Liang Li, Tom Marrie, Brian D. Sykes, Hans J. Vogel, Lori Querengesser: HMDB: the Human Metabolome Database. Nucleic Acids Research 35(Database-Issue): 521-526 (2007) |
2006 | ||
87 | Brett Poulin, Roman Eisner, Duane Szafron, Paul Lu, Russell Greiner, David S. Wishart, Alona Fyshe, Brandon Pearcy, Cam Macdonell, John Anvik: Visual Explanation of Evidence with Additive Classifiers. AAAI 2006 | |
86 | EE | Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, Dale Schuurmans: Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling. ACL 2006 |
85 | EE | Marianne Morris, Russell Greiner, Jörg Sander, Albert Murtha, Mark Schmidt: A Classification-Based Glioma Diffusion Model Using MRI Data. Canadian Conference on AI 2006: 98-109 |
84 | EE | Ramana Isukapalli, Ahmed M. Elgammal, Russell Greiner: Learning to Detect Objects of Many Classes Using Binary Classifiers. ECCV (1) 2006: 352-364 |
83 | EE | Ramana Isukapalli, Ahmed M. Elgammal, Russell Greiner: Learning to Identify Facial Expression During Detection Using Markov Decision Process. FG 2006: 305-310 |
82 | EE | Shaojun Wang, Shaomin Wang, Li Cheng, Russell Greiner, Dale Schuurmans: Stochastic Analysis of Lexical and Semantic Enhanced Structural Language Model. ICGI 2006: 97-111 |
81 | EE | Chi-Hoon Lee, Russell Greiner, Shaojun Wang: Using query-specific variance estimates to combine Bayesian classifiers. ICML 2006: 529-536 |
80 | EE | Ramana Isukapalli, Ahmed M. Elgammal, Russell Greiner: Learning Policies for Efficiently Identifying Objects of Many Classes. ICPR (3) 2006: 356-361 |
79 | EE | Robert Price, Russell Greiner, Gerald Häubl, Alden Flatt: Automatic construction of personalized customer interfaces. IUI 2006: 250-257 |
78 | EE | Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, Russell Greiner: Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. NIPS 2006: 793-800 |
77 | EE | Jiayuan Huang, Tingshao Zhu, Russell Greiner, Dengyong Zhou, Dale Schuurmans: Information Marginalization on Subgraphs. PKDD 2006: 199-210 |
76 | EE | Chi-Hoon Lee, Russell Greiner, Osmar R. Zaïane: Efficient Spatial Classification Using Decoupled Conditional Random Fields. PKDD 2006: 272-283 |
75 | EE | Russell Greiner, Ryan Hayward, Magdalena Jankowska, Michael Molloy: Finding optimal satisficing strategies for and-or trees. Artif. Intell. 170(1): 19-58 (2006) |
74 | EE | Marianne Morris, Russell Greiner, Jörg Sander, Albert Murtha, Mark Schmidt: Learning a Classification-based Glioma Growth Model Using MRI Data. JCP 1(7): 21-31 (2006) |
73 | EE | Luca Pireddu, Duane Szafron, Paul Lu, Russell Greiner: The Path-A metabolic pathway prediction web server. Nucleic Acids Research 34(Web-Server-Issue): 714-719 (2006) |
2005 | ||
72 | Brett Poulin, Duane Szafron, Paul Lu, Russell Greiner, David S. Wishart, Roman Eisner, Alona Fyshe, Brandon Pearcy, Luca Pireddu: The Proteome Analyst Suite of Automated Function Prediction Tools. AAAI 2005: 1698-1699 | |
71 | Tingshao Zhu, Russell Greiner, Gerald Häubl, Kevin Jewell, Robert Price: Goal-Directed Site-Independent Recommendations from Passive Observations. AAAI 2005: 549-557 | |
70 | Yuhong Guo, Russell Greiner: Discriminative Model Selection for Belief Net Structures. AAAI 2005: 770-776 | |
69 | EE | Ramana Isukapalli, Ahmed M. Elgammal, Russell Greiner: Learning a Dynamic Classification Method to Detect Faces and Identify Facial Expression. AMFG 2005: 70-84 |
68 | Roman Eisner, Brett Poulin, Duane Szafron, Paul Lu, Russell Greiner: Improving Protein Function Prediction Using the Hierarchical Structure of the Gene Ontology. CIBCB 2005: 354-363 | |
67 | EE | Chi-Hoon Lee, Mark Schmidt, Albert Murtha, Aalo Bistritz, Jörg Sander, Russell Greiner: Segmenting Brain Tumors with Conditional Random Fields and Support Vector Machines. CVBIA 2005: 469-478 |
66 | EE | Aloak Kapoor, Russell Greiner: Learning and Classifying Under Hard Budgets. ECML 2005: 170-181 |
65 | EE | Shaojun Wang, Shaomin Wang, Russell Greiner, Dale Schuurmans, Li Cheng: Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields. ICML 2005: 948-955 |
64 | EE | Tingshao Zhu, Russell Greiner, Gerald Häubl, Kevin Jewell, Robert Price: Using Learned Browsing Behavior Models to Recommend Relevant Web Pages. IJCAI 2005: 1589-1590 |
63 | EE | Yuhong Guo, Russell Greiner, Dale Schuurmans: Learning Coordination Classifiers. IJCAI 2005: 714-721 |
62 | EE | Chi-Hoon Lee, Russell Greiner, Mark Schmidt: Support Vector Random Fields for Spatial Classification. PKDD 2005: 121-132 |
61 | EE | Tingshao Zhu, Russell Greiner, Gerald Häubl, Kevin Jewell, Robert Price: Off-line Evaluation of Recommendation Functions. User Modeling 2005: 337-341 |
60 | EE | Russell Greiner, Xiaoyuan Su, Bin Shen, Wei Zhou: Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers. Machine Learning 59(3): 297-322 (2005) |
59 | EE | Paul Lu, Duane Szafron, Russell Greiner, David S. Wishart, Alona Fyshe, Brandon Pearcy, Brett Poulin, Roman Eisner, Danny Ngo, Nicholas Lamb: PA-GOSUB: a searchable database of model organism protein sequences with their predicted Gene Ontology molecular function and subcellular localization. Nucleic Acids Research 33(Database-Issue): 147-153 (2005) |
58 | EE | Gary H. Van Domselaar, Paul Stothard, Savita Shrivastava, Joseph A. Cruz, Anchi Guo, Xiaoli Dong, Paul Lu, Duane Szafron, Russell Greiner, David S. Wishart: BASys: a web server for automated bacterial genome annotation. Nucleic Acids Research 33(Web-Server-Issue): 455-459 (2005) |
2004 | ||
57 | EE | Omid Madani, Daniel J. Lizotte, Russell Greiner: The Budgeted Multi-armed Bandit Problem. COLT 2004: 643-645 |
56 | EE | Lihong Li, Vadim Bulitko, Russell Greiner: Batch Reinforcement Learning with State Importance. ECML 2004: 566-568 |
55 | EE | Omid Madani, Daniel J. Lizotte, Russell Greiner: Active Model Selection. UAI 2004: 357-365 |
54 | EE | Zhiyong Lu, Duane Szafron, Russell Greiner, Paul Lu, David S. Wishart, Brett Poulin, John Anvik, Cam Macdonell, Roman Eisner: Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20(4): (2004) |
53 | Duane Szafron, Paul Lu, Russell Greiner, David S. Wishart, Brett Poulin, Roman Eisner, Zhiyong Lu, John Anvik, Cam Macdonell, Alona Fyshe, David Meeuwis: Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Research 32(Web-Server-Issue): 365-371 (2004) | |
2003 | ||
52 | EE | Ilya Levner, Vadim Bulitko, Lihong Li, Greg Lee, Russell Greiner: Towards Automated Creation of Image Interpretation Systems. Australian Conference on Artificial Intelligence 2003: 653-665 |
51 | EE | Bin Shen, Xiaoyuan Su, Russell Greiner, Petr Musílek, Corrine Cheng: Discriminative Parameter Learning of General Bayesian Network Classifiers. ICTAI 2003: 296-305 |
50 | Ramana Isukapalli, Russell Greiner: Use of Off-line Dynamic Programming for Efficient Image Interpretation. IJCAI 2003: 1319-1325 | |
49 | Vadim Bulitko, Lihong Li, Russell Greiner, Ilya Levner: Lookahead Pathologies for Single Agent Search. IJCAI 2003: 1531-1533 | |
48 | EE | Tingshao Zhu, Russell Greiner, Gerald Häubl, Robert Price: Predicting Web Information Content. ITWP 2003: 241-254 |
47 | Daniel J. Lizotte, Omid Madani, Russell Greiner: Budgeted Learning of Naive-Bayes Classifiers. UAI 2003: 378-385 | |
46 | EE | Tingshao Zhu, Russell Greiner, Gerald Häubl: Learning a Model of a Web User's Interests. User Modeling 2003: 65-75 |
45 | EE | Tingshao Zhu, Russell Greiner, Gerald Häubl: An Effective Complete-Web Recommender System. WWW (Alternate Paper Tracks) 2003 |
2002 | ||
44 | Russell Greiner, Wei Zhou: Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers. AAAI/IAAI 2002: 167-173 | |
43 | Russell Greiner, Ryan Hayward, Michael Molloy: Optimal Depth-First Strategies for And-Or Trees. AAAI/IAAI 2002: 725-730 | |
42 | EE | Ilya Levner, Vadim Bulitko, Omid Madani, Russell Greiner: Performance of Lookahead Control Policies in the Face of Abstractions and Approximations. SARA 2002: 299-307 |
41 | EE | Jie Cheng, Russell Greiner, Jonathan Kelly, David A. Bell, Weiru Liu: Learning Bayesian networks from data: An information-theory based approach. Artif. Intell. 137(1-2): 43-90 (2002) |
40 | EE | Russell Greiner, Adam J. Grove, Dan Roth: Learning cost-sensitive active classifiers. Artif. Intell. 139(2): 137-174 (2002) |
2001 | ||
39 | EE | Jie Cheng, Russell Greiner: Learning Bayesian Belief Network Classifiers: Algorithms and System. Canadian Conference on AI 2001: 141-151 |
38 | Ramana Isukapalli, Russell Greiner: Efficient Car Recognition Policies. ICRA 2001: 2134-2139 | |
37 | Ramana Isukapalli, Russell Greiner: Efficient Interpretation Policies. IJCAI 2001: 1381-1390 | |
36 | EE | Tim Van Allen, Russell Greiner, Peter Hooper: Bayesian Error-Bars for Belief Net Inference. UAI 2001: 522-529 |
35 | EE | Russell Greiner, Christian Darken, N. Iwan Santoso: Efficient reasoning. ACM Comput. Surv. 33(1): 1-30 (2001) |
2000 | ||
34 | Benjamin Korvemaker, Russell Greiner: Predicting UNIX Command Lines: Adjusting to User Patterns. AAAI/IAAI 2000: 230-235 | |
33 | Tim Van Allen, Russell Greiner: Model Selection Criteria for Learning Belief Nets: An Empirical Comparison. ICML 2000: 1047-1054 | |
1999 | ||
32 | EE | Jie Cheng, Russell Greiner: Comparing Bayesian Network Classifiers. UAI 1999: 101-108 |
31 | Russell Greiner: The Complexity of Revising Logic Programs. J. Log. Program. 40(2-3): 273-298 (1999) | |
1997 | ||
30 | Tobias Scheffer, Russell Greiner, Christian Darken: Why Experimentation can be better than "Perfect Guidance". ICML 1997: 331-339 | |
29 | EE | Russell Greiner, Adam J. Grove, Dale Schuurmans: Learning Bayesian Nets that Perform Well. UAI 1997: 198-207 |
28 | EE | Devika Subramanian, Russell Greiner, Judea Pearl: The Relevance of Relevance (Editorial). Artif. Intell. 97(1-2): 1-5 (1997) |
27 | EE | Russell Greiner, Adam J. Grove, Alexander Kogan: Knowing what doesn't Matter: Exploiting the Omission of Irrelevant Data. Artif. Intell. 97(1-2): 345-380 (1997) |
1996 | ||
26 | Russell Greiner, Adam J. Grove, Dan Roth: Learning Active Classifiers. ICML 1996: 207-215 | |
25 | Russell Greiner, Adam J. Grove, Alexander Kogan: Exploiting the Omission of Irrelevant Data. ICML 1996: 216-224 | |
24 | EE | Russell Greiner, Pekka Orponen: Probably Approximately Optimal Satisficing Strategies. Artif. Intell. 82(1-2): 21-44 (1996) |
23 | EE | Russell Greiner: PALO: A Probabilistic Hill-Climbing Algorithm. Artif. Intell. 84(1-2): 177-208 (1996) |
1995 | ||
22 | EE | Dale Schuurmans, Russell Greiner: Sequential PAC Learning. COLT 1995: 377-384 |
21 | Russell Greiner: The Challenge of Revising an Impure Theory. ICML 1995: 269-277 | |
20 | Russell Greiner: The Complexity of Theory Revision. IJCAI 1995: 1162-1168 | |
19 | Dale Schuurmans, Russell Greiner: Practical PAC Learning. IJCAI 1995: 1169-1177 | |
1994 | ||
18 | Russell Greiner, Ramana Isukapalli: Learning to Select Useful Landmarks. AAAI 1994: 1251-1256 | |
1993 | ||
17 | Charles Elkan, Russell Greiner: D. B. Lenat and R. V. Guha, Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Artif. Intell. 61(1): 41-52 (1993) | |
1992 | ||
16 | Russell Greiner, Igor Jurisica: A Statistical Approach to Solving the EBL Utility Problem. AAAI 1992: 241-248 | |
15 | Russell Greiner, Dale Schuurmans: Learning an Optimally Accurate Representation System. ECAI Workshop on Knowledge Representation and Reasoning 1992: 145-159 | |
14 | Russell Greiner, Dale Schuurmans: Learning Useful Horn Approximations. KR 1992: 383-392 | |
13 | EE | Russell Greiner: Learning Efficient Query Processing Strategies. PODS 1992: 33-46 |
1991 | ||
12 | Russell Greiner, Charles Elkan: Measuring and Improving the Effectiveness of Representations. IJCAI 1991: 518-524 | |
11 | Russell Greiner, Pekka Orponen: Probably Approximately Optimal Derivation Strategies. KR 1991: 277-288 | |
10 | Russell Greiner: Finding Optimal Derivation Strategies in Redundant Knowledge Bases. Artif. Intell. 50(1): 95-115 (1991) | |
1990 | ||
9 | EE | Pekka Orponen, Russell Greiner: On the Sample Complexity of Finding Good Search Strategies. COLT 1990: 352-358 |
1989 | ||
8 | Russell Greiner, J. Likuski: Incorporating Redundant Learned Rules: A Preliminary Formal Analysis of EBL. IJCAI 1989: 744-749 | |
7 | Russell Greiner: Towards a Formal Analysis of EBL. ML 1989: 450-453 | |
6 | Russell Greiner, Barbara A. Smith, Ralph W. Wilkerson: A Correction to the Algorithm in Reiter's Theory of Diagnosis. Artif. Intell. 41(1): 79-88 (1989) | |
1988 | ||
5 | Russell Greiner: Learning by Understanding Analogies. Artif. Intell. 35(1): 81-125 (1988) | |
4 | Russell Greiner: Against the unjustified use of probabilities. Computational Intelligence 4: 79-83 (1988) | |
3 | Russell Greiner: A Review of Machine Learning at AAAI-87. Machine Learning 3: 79-92 (1988) | |
1983 | ||
2 | Russell Greiner, Michael R. Genesereth: What's New? A Semantic Definition of Novelty. IJCAI 1983: 450-454 | |
1980 | ||
1 | Russell Greiner, Douglas B. Lenat: A Representation Language Language. AAAI 1980: 165-169 |