2009 | ||
---|---|---|
65 | EE | Szymon Jaroszewicz, Tobias Scheffer, Dan A. Simovici: Scalable pattern mining with Bayesian networks as background knowledge. Data Min. Knowl. Discov. 18(1): 56-100 (2009) |
2008 | ||
64 | EE | Thoralf Klein, Ulf Brefeld, Tobias Scheffer: Exact and Approximate Inference for Annotating Graphs with Structural SVMs. ECML/PKDD (1) 2008: 611-623 |
63 | EE | Uwe Dick, Peter Haider, Tobias Scheffer: Learning from incomplete data with infinite imputations. ICML 2008: 232-239 |
62 | EE | Steffen Bickel, Jasmina Bogojeska, Thomas Lengauer, Tobias Scheffer: Multi-task learning for HIV therapy screening. ICML 2008: 56-63 |
61 | EE | Steffen Bickel, Christoph Sawade, Tobias Scheffer: Transfer Learning by Distribution Matching for Targeted Advertising. NIPS 2008: 145-152 |
60 | EE | Szymon Jaroszewicz, Lenka Ivantysynova, Tobias Scheffer: Schema matching on streams with accuracy guarantees. Intell. Data Anal. 12(3): 253-270 (2008) |
2007 | ||
59 | EE | Alexander Zien, Ulf Brefeld, Tobias Scheffer: Transductive support vector machines for structured variables. ICML 2007: 1183-1190 |
58 | EE | Laura Dietz, Steffen Bickel, Tobias Scheffer: Unsupervised prediction of citation influences. ICML 2007: 233-240 |
57 | EE | Peter Haider, Ulf Brefeld, Tobias Scheffer: Supervised clustering of streaming data for email batch detection. ICML 2007: 345-352 |
56 | EE | Steffen Bickel, Michael Brückner, Tobias Scheffer: Discriminative learning for differing training and test distributions. ICML 2007: 81-88 |
55 | EE | David S. Vogel, Ognian Asparouhov, Tobias Scheffer: Scalable look-ahead linear regression trees. KDD 2007: 757-764 |
54 | EE | Ulf Brefeld, Thoralf Klein, Tobias Scheffer: Support Vector Machines for Collective Inference. MLG 2007 |
2006 | ||
53 | Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou: Machine Learning: ECML 2006, 17th European Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings Springer 2006 | |
52 | Johannes Fürnkranz, Tobias Scheffer, Myra Spiliopoulou: Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings Springer 2006 | |
51 | EE | Ulf Brefeld, Thomas Gärtner, Tobias Scheffer, Stefan Wrobel: Efficient co-regularised least squares regression. ICML 2006: 137-144 |
50 | EE | Ulf Brefeld, Tobias Scheffer: Semi-supervised learning for structured output variables. ICML 2006: 145-152 |
49 | EE | Steffen Bickel, Tobias Scheffer: Dirichlet-Enhanced Spam Filtering based on Biased Samples. NIPS 2006: 161-168 |
48 | EE | Michael Brückner, Peter Haider, Tobias Scheffer: Highly Scalable Discriminative Spam Filtering. TREC 2006 |
2005 | ||
47 | Achim G. Hoffmann, Hiroshi Motoda, Tobias Scheffer: Discovery Science, 8th International Conference, DS 2005, Singapore, October 8-11, 2005, Proceedings Springer 2005 | |
46 | EE | Steffen Bickel, Tobias Scheffer: Estimation of Mixture Models Using Co-EM. ECML 2005: 35-46 |
45 | EE | Steffen Bickel, Peter Haider, Tobias Scheffer: Learning to Complete Sentences. ECML 2005: 497-504 |
44 | EE | Ulf Brefeld, Christoph Büscher, Tobias Scheffer: Multi-view Discriminative Sequential Learning. ECML 2005: 60-71 |
43 | EE | Isabel Drost, Tobias Scheffer: Thwarting the Nigritude Ultramarine: Learning to Identify Link Spam. ECML 2005: 96-107 |
42 | EE | Steffen Bickel, Peter Haider, Tobias Scheffer: Predicting Sentences using N-Gram Language Models. HLT/EMNLP 2005 |
41 | EE | Szymon Jaroszewicz, Tobias Scheffer: Fast discovery of unexpected patterns in data, relative to a Bayesian network. KDD 2005: 118-127 |
40 | Ulf Brefeld, Christoph Büscher, Tobias Scheffer: Multi-View Hidden Markov Perceptrons. LWA 2005: 134-138 | |
39 | EE | Tobias Scheffer: Multi-View Learning and Link Farm Discovery. Probabilistic, Logical and Relational Learning 2005 |
38 | EE | Tobias Scheffer: Finding association rules that trade support optimally against confidence. Intell. Data Anal. 9(4): 381-395 (2005) |
37 | EE | David S. Vogel, Steffen Bickel, Peter Haider, Rolf Schimpfky, Peter Siemen, Steve Bridges, Tobias Scheffer: Classifying search engine queries using the web as background knowledge. SIGKDD Explorations 7(2): 117-122 (2005) |
2004 | ||
36 | Andreas Abecker, Steffen Bickel, Ulf Brefeld, Isabel Drost, Nicola Henze, Olaf Herden, Mirjam Minor, Tobias Scheffer, Ljiljana Stojanovic, Stephan Weibelzahl: LWA 2004: Lernen - Wissensentdeckung - Adaptivität, Berlin, 4. - 6. Oktober 2004, Workshopwoche der GI-Fachgruppen/Arbeitskreise (1) Fachgruppe Adaptivität und Benutzermodellierung in Interaktiven Softwaresystemen (ABIS 2004), (2) Arbeitskreis Knowledge Discovery (AKKD 2004), (3) Fachgruppe Maschinelles Lernen (FGML 2004), (4) Fachgruppe Wissens- und Erfahrungsmanagement (FGWM 2004) Humbold-Universität Berlin 2004 | |
35 | EE | Steffen Bickel, Tobias Scheffer: Learning from Message Pairs for Automatic Email Answering. ECML 2004: 87-98 |
34 | EE | Steffen Bickel, Tobias Scheffer: Multi-View Clustering. ICDM 2004: 19-26 |
33 | EE | Ulf Brefeld, Tobias Scheffer: Co-EM support vector learning. ICML 2004 |
32 | Tobias Scheffer: Workshop der GI-Fachgruppe "Maschinelles Lernen" (FGML). LWA 2004: 110 | |
31 | Ulf Brefeld, Steffen Bickel, Tobias Scheffer: Multi-View Lernen. LWA 2004: 131 | |
30 | Isabel Drost, Tobias Scheffer: Efficiency and Stability of Clustering Algorithms for Linked Data. LWA 2004: 146 | |
29 | EE | Korinna Grabski, Tobias Scheffer: Sentence completion. SIGIR 2004: 433-439 |
28 | EE | Tobias Scheffer: Email answering assistance by semi-supervised text classification. Intell. Data Anal. 8(5): 481-493 (2004) |
27 | EE | Mark-A. Krogel, Tobias Scheffer: Multi-Relational Learning, Text Mining, and Semi-Supervised Learning for Functional Genomics. Machine Learning 57(1-2): 61-81 (2004) |
2003 | ||
26 | EE | Mark-A. Krogel, Tobias Scheffer: Effectiveness of information extraction, multi-relational, and multi-view learning for prediction gene deletion experiments. BIOKDD 2003: 10-16 |
25 | EE | Mark-A. Krogel, Tobias Scheffer: Effectiveness of Information Extraction, Multi-Relational, and Semi-Supervised Learning for Predicting Functional Properties of Genes. ICDM 2003: 569-572 |
24 | EE | Michael Kockelkorn, Andreas Lüneburg, Tobias Scheffer: Learning to Answer Emails. IDA 2003: 25-35 |
23 | EE | Michael Kockelkorn, Andreas Lüneburg, Tobias Scheffer: Using Transduction and Multi-view Learning to Answer Emails. PKDD 2003: 266-277 |
2002 | ||
22 | EE | Tobias Scheffer, Stefan Wrobel: A Scalable Constant-Memory Sampling Algorithm for Pattern Discovery in Large Databases. PKDD 2002: 397-409 |
21 | EE | Tobias Scheffer, Stefan Wrobel: Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. Journal of Machine Learning Research 3: 833-862 (2002) |
20 | Tobias Scheffer, Stefan Wrobel, Borislav Popov, Damyan Ognianov, Christian Decomain, Susanne Hoche: Lerning Hidden Markov Models for Information Extraction Actively from Partially Labeled Text. KI 16(2): 17-22 (2002) | |
19 | EE | Mark-A. Krogel, Marcus Denecke, Marco Landwehr, Tobias Scheffer: Combining Data and Text Mining Techniques for Yeast Gene Regulation Prediction: A Case Study. SIGKDD Explorations 4(2): 104-105 (2002) |
2001 | ||
18 | EE | Hans Gründel, Tino Naphtali, Christian Wiech, Jan-Marian Gluba, Maiken Rohdenburg, Tobias Scheffer: Clipping and Analyzing News Using Machine Learning Techniques. Discovery Science 2001: 87-99 |
17 | EE | Tobias Scheffer, Christian Decomain, Stefan Wrobel: Mining the Web with Active Hidden Markov Models. ICDM 2001: 645-646 |
16 | Tobias Scheffer, Stefan Wrobel: Incremental Maximization of Non-Instance-Averaging Utility Functions with Applications to Knowledge Discovery Problems. ICML 2001: 481-488 | |
15 | EE | Tobias Scheffer, Christian Decomain, Stefan Wrobel: Active Hidden Markov Models for Information Extraction. IDA 2001: 309-318 |
14 | EE | Tobias Scheffer: Finding Association Rules That Trade Support Optimally against Confidence. PKDD 2001: 424-435 |
2000 | ||
13 | EE | Tobias Scheffer: Average-Case Analysis of Classification Algorithms for Boolean Functions and Decision Trees. ALT 2000: 194-208 |
12 | EE | Tobias Scheffer: Nonparametric Regularization of Decision Trees. ECML 2000: 344-356 |
11 | Tobias Scheffer: Predicting the Generalization Performance of Cross Validatory Model Selection Criteria. ICML 2000: 831-838 | |
10 | EE | Tobias Scheffer, Stefan Wrobel: A sequential sampling algorithm for a general class of utility criteria. KDD 2000: 330-334 |
1999 | ||
9 | EE | Andrew R. Mitchell, Tobias Scheffer, Arun Sharma, Frank Stephan: The VC-Dimension of Subclasses of Pattern. ATL 1999: 93-105 |
8 | Tobias Scheffer, Thorsten Joachims: Expected Error Analysis for Model Selection. ICML 1999: 361-370 | |
7 | Tobias Scheffer: Error Estimation and Model Selection. KI 13(3): 46-48 (1999) | |
6 | Tobias Scheffer: International Conference on Machine Learning (ICML-99). KI 13(4): 68 (1999) | |
1998 | ||
5 | Tobias Scheffer, Thorsten Joachims: Estimating the Expected Error of Empirical Minimizers for Model Selection. AAAI/IAAI 1998: 1200 | |
1997 | ||
4 | Tobias Scheffer, Russell Greiner, Christian Darken: Why Experimentation can be better than "Perfect Guidance". ICML 1997: 331-339 | |
3 | Tobias Scheffer, Ralf Herbrich: Unbiased Assesment of Learning Algorithms. IJCAI (2) 1997: 798-803 | |
1996 | ||
2 | Tobias Scheffer, Ralf Herbrich, Fritz Wysotzki: Efficient Theta-Subsumption Based on Graph Algorithms. Inductive Logic Programming Workshop 1996: 212-228 | |
1995 | ||
1 | Tobias Scheffer: A Generic Algorithm for Learning Rules with Hierarchical Exceptions. SBIA 1995: 181-190 |