2008 |
99 | | Hoifung Poon,
Pedro Domingos,
Marc Sumner:
A General Method for Reducing the Complexity of Relational Inference and its Application to MCMC.
AAAI 2008: 1075-1080 |
98 | | Parag Singla,
Pedro Domingos:
Lifted First-Order Belief Propagation.
AAAI 2008: 1094-1099 |
97 | | Jue Wang,
Pedro Domingos:
Hybrid Markov Logic Networks.
AAAI 2008: 1106-1111 |
96 | EE | Pedro Domingos:
Markov logic: a unifying language for knowledge and information management.
CIKM 2008: 519 |
95 | EE | Stanley Kok,
Pedro Domingos:
Extracting Semantic Networks from Text Via Relational Clustering.
ECML/PKDD (1) 2008: 624-639 |
94 | EE | Hoifung Poon,
Pedro Domingos:
Joint Unsupervised Coreference Resolution with Markov Logic.
EMNLP 2008: 650-659 |
93 | EE | Pedro Domingos,
Stanley Kok,
Daniel Lowd,
Hoifung Poon,
Matthew Richardson,
Parag Singla:
Markov Logic.
Probabilistic Inductive Logic Programming 2008: 92-117 |
92 | EE | Pedro Domingos,
Stanley Kok,
Daniel Lowd,
Hoifung Poon,
Matthew Richardson,
Parag Singla,
Marc Sumner,
Jue Wang:
Markov Logic: A Unifying Language for Structural and Statistical Pattern Recognition.
SSPR/SPR 2008: 3 |
91 | EE | Daniel Lowd,
Pedro Domingos:
Learning Arithmetic Circuits.
UAI 2008: 383-392 |
90 | EE | Pedro Domingos,
Daniel Lowd,
Stanley Kok,
Hoifung Poon,
Matthew Richardson,
Parag Singla:
Just Add Weights: Markov Logic for the Semantic Web.
URSW (LNCS Vol.) 2008: 1-25 |
89 | EE | Thomas G. Dietterich,
Pedro Domingos,
Lise Getoor,
Stephen Muggleton,
Prasad Tadepalli:
Structured machine learning: the next ten years.
Machine Learning 73(1): 3-23 (2008) |
2007 |
88 | | Hoifung Poon,
Pedro Domingos:
Joint Inference in Information Extraction.
AAAI 2007: 913-918 |
87 | EE | Stanley Kok,
Pedro Domingos:
Statistical predicate invention.
ICML 2007: 433-440 |
86 | EE | Daniel Lowd,
Pedro Domingos:
Recursive Random Fields.
IJCAI 2007: 950-955 |
85 | EE | Daniel Lowd,
Pedro Domingos:
Efficient Weight Learning for Markov Logic Networks.
PKDD 2007: 200-211 |
84 | EE | Pedro Domingos,
Parag Singla:
Markov Logic in Infinite Domains.
Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 |
83 | EE | Pedro Domingos:
Toward knowledge-rich data mining.
Data Min. Knowl. Discov. 15(1): 21-28 (2007) |
2006 |
82 | | Parag Singla,
Pedro Domingos:
Memory-Efficient Inference in Relational Domains.
AAAI 2006 |
81 | | Hoifung Poon,
Pedro Domingos:
Sound and Efficient Inference with Probabilistic and Deterministic Dependencies.
AAAI 2006 |
80 | | Pedro Domingos,
Stanley Kok,
Hoifung Poon,
Matthew Richardson,
Parag Singla:
Unifying Logical and Statistical AI.
AAAI 2006 |
79 | EE | Pedro Domingos:
Learning, Logic, and Probability: A Unified View.
EKAW 2006: 2 |
78 | EE | Pedro Domingos:
Learning, Logic, and Probability: A Unified View.
IBERAMIA-SBIA 2006: 3 |
77 | EE | Parag Singla,
Pedro Domingos:
Entity Resolution with Markov Logic.
ICDM 2006: 572-582 |
76 | EE | Pedro Domingos:
Learning, Logic, and Probability: A Unified View.
PRICAI 2006: 1 |
75 | EE | Matthew Richardson,
Pedro Domingos:
Markov logic networks.
Machine Learning 62(1-2): 107-136 (2006) |
2005 |
74 | | Parag Singla,
Pedro Domingos:
Discriminative Training of Markov Logic Networks.
AAAI 2005: 868-873 |
73 | | Pedro Domingos,
Fernando M. Silva,
Horácio C. Neto:
An Efficient and Scalable Architecture for Neural Networks with Backpropagation Learning.
FPL 2005: 89-94 |
72 | EE | Stanley Kok,
Pedro Domingos:
Learning the structure of Markov logic networks.
ICML 2005: 441-448 |
71 | EE | Daniel Lowd,
Pedro Domingos:
Naive Bayes models for probability estimation.
ICML 2005: 529-536 |
70 | EE | Parag Singla,
Pedro Domingos:
Collective Object Identification.
IJCAI 2005: 1636-1637 |
69 | EE | Parag Singla,
Pedro Domingos:
Object Identification with Attribute-Mediated Dependences.
PKDD 2005: 297-308 |
68 | | Michael L. Anderson,
Thomas Barkowsky,
Pauline Berry,
Douglas S. Blank,
Timothy Chklovski,
Pedro Domingos,
Marek J. Druzdzel,
Christian Freksa,
John Gersh,
Mary Hegarty,
Tze-Yun Leong,
Henry Lieberman,
Ric K. Lowe,
Susann Luperfoy,
Rada Mihalcea,
Lisa Meeden,
David P. Miller,
Tim Oates,
Robert Popp,
Daniel Shapiro,
Nathan Schurr,
Push Singh,
John Yen:
Reports on the 2005 AAAI Spring Symposium Series.
AI Magazine 26(2): 87-92 (2005) |
67 | EE | Steffen Staab,
Pedro Domingos,
Peter Mika,
Jennifer Golbeck,
Li Ding,
Timothy W. Finin,
Anupam Joshi,
Andrzej Nowak,
Robin R. Vallacher:
Social Networks Applied.
IEEE Intelligent Systems 20(1): 80-93 (2005) |
2004 |
66 | EE | Pedro Domingos:
Learning, Logic, and Probability: A Unified View.
ALT 2004: 53 |
65 | EE | Pedro Domingos:
Real-World Learning with Markov Logic Networks.
ECML 2004: 17 |
64 | EE | Daniel Grossman,
Pedro Domingos:
Learning Bayesian network classifiers by maximizing conditional likelihood.
ICML 2004 |
63 | EE | Pedro Domingos:
Learning, Logic, and Probability: A Unified View.
ILP 2004: 359 |
62 | EE | Nilesh N. Dalvi,
Pedro Domingos,
Mausam,
Sumit K. Sanghai,
Deepak Verma:
Adversarial classification.
KDD 2004: 99-108 |
61 | EE | Pedro Domingos:
Real-World Learning with Markov Logic Networks.
PKDD 2004: 17 |
60 | EE | Robin Dhamankar,
Yoonkyong Lee,
AnHai Doan,
Alon Y. Halevy,
Pedro Domingos:
iMAP: Discovering Complex Mappings between Database Schemas.
SIGMOD Conference 2004: 383-394 |
59 | | AnHai Doan,
Jayant Madhavan,
Pedro Domingos,
Alon Y. Halevy:
Ontology Matching: A Machine Learning Approach.
Handbook on Ontologies 2004: 385-404 |
58 | | Matthew Richardson,
Pedro Domingos:
Combining Link and Content Information in Web Search.
Web Dynamics 2004: 179-194 |
2003 |
57 | | Lise Getoor,
Ted E. Senator,
Pedro Domingos,
Christos Faloutsos:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003
ACM 2003 |
56 | EE | Pedro Domingos,
Matthew Richardson:
Learning from Networks of Examples.
EPIA 2003: 5 |
55 | | Matthew Richardson,
Pedro Domingos:
Learning with Knowledge from Multiple Experts.
ICML 2003: 624-631 |
54 | | Daniel S. Weld,
Corin R. Anderson,
Pedro Domingos,
Oren Etzioni,
Krzysztof Gajos,
Tessa A. Lau,
Steven A. Wolfman:
Automatically Personalizing User Interfaces.
IJCAI 2003: 1613-1619 |
53 | EE | Matthew Richardson,
Rakesh Agrawal,
Pedro Domingos:
Trust Management for the Semantic Web.
International Semantic Web Conference 2003: 351-368 |
52 | EE | Matthew Richardson,
Pedro Domingos:
Building large knowledge bases by mass collaboration.
K-CAP 2003: 129-137 |
51 | EE | Tessa A. Lau,
Pedro Domingos,
Daniel S. Weld:
Learning programs from traces using version space algebra.
K-CAP 2003: 36-43 |
50 | | AnHai Doan,
Pedro Domingos,
Alon Y. Halevy:
Learning to Match the Schemas of Data Sources: A Multistrategy Approach.
Machine Learning 50(3): 279-301 (2003) |
49 | EE | Foster J. Provost,
Pedro Domingos:
Tree Induction for Probability-Based Ranking.
Machine Learning 52(3): 199-215 (2003) |
48 | EE | Tessa A. Lau,
Steven A. Wolfman,
Pedro Domingos,
Daniel S. Weld:
Programming by Demonstration Using Version Space Algebra.
Machine Learning 53(1-2): 111-156 (2003) |
47 | EE | Pedro Domingos:
Prospects and challenges for multi-relational data mining.
SIGKDD Explorations 5(1): 80-83 (2003) |
46 | EE | AnHai Doan,
Jayant Madhavan,
Robin Dhamankar,
Pedro Domingos,
Alon Y. Halevy:
Learning to match ontologies on the Semantic Web.
VLDB J. 12(4): 303-319 (2003) |
2002 |
45 | | Jayant Madhavan,
Philip A. Bernstein,
Pedro Domingos,
Alon Y. Halevy:
Representing and Reasoning about Mappings between Domain Models.
AAAI/IAAI 2002: 80-86 |
44 | EE | Corin R. Anderson,
Pedro Domingos,
Daniel S. Weld:
Relational Markov models and their application to adaptive web navigation.
KDD 2002: 143-152 |
43 | EE | Geoff Hulten,
Pedro Domingos:
Mining complex models from arbitrarily large databases in constant time.
KDD 2002: 525-531 |
42 | EE | Matthew Richardson,
Pedro Domingos:
Mining knowledge-sharing sites for viral marketing.
KDD 2002: 61-70 |
41 | EE | AnHai Doan,
Jayant Madhavan,
Pedro Domingos,
Alon Y. Halevy:
Learning to map between ontologies on the semantic web.
WWW 2002: 662-673 |
40 | EE | Pedro Domingos:
When and How to Subsample: Report on the KDD-2001 Panel.
SIGKDD Explorations 3(2): 74-75 (2002) |
2001 |
39 | EE | Pedro Domingos,
Geoff Hulten:
Catching up with the Data: Research Issues in Mining Data Streams.
DMKD 2001 |
38 | | Pedro Domingos,
Geoff Hulten:
A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering.
ICML 2001: 106-113 |
37 | | Corin R. Anderson,
Pedro Domingos,
Daniel S. Weld:
Adaptive Web Navigation for Wireless Devices.
IJCAI 2001: 879-884 |
36 | EE | Steven A. Wolfman,
Tessa A. Lau,
Pedro Domingos,
Daniel S. Weld:
Mixed initiative interfaces for learning tasks: SMARTedit talks back.
IUI 2001: 167-174 |
35 | EE | Pedro Domingos,
Matthew Richardson:
Mining the network value of customers.
KDD 2001: 57-66 |
34 | EE | Geoff Hulten,
Laurie Spencer,
Pedro Domingos:
Mining time-changing data streams.
KDD 2001: 97-106 |
33 | EE | Matthew Richardson,
Pedro Domingos:
The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank.
NIPS 2001: 1441-1448 |
32 | EE | Pedro Domingos,
Geoff Hulten:
Learning from Infinite Data in Finite Time.
NIPS 2001: 673-680 |
31 | EE | AnHai Doan,
Pedro Domingos,
Alon Y. Halevy:
Reconciling Schemas of Disparate Data Sources: A Machine-Learning Approach.
SIGMOD Conference 2001: 509-520 |
30 | EE | Corin R. Anderson,
Pedro Domingos,
Daniel S. Weld:
Personalizing Web Sites for Mobile Users.
WWW 2001: 565-575 |
2000 |
29 | | Pedro Domingos:
A Unified Bias-Variance Decomposition for Zero-One and Squared Loss.
AAAI/IAAI 2000: 564-569 |
28 | EE | Pedro Domingos:
Beyond Occam's Razor: Process-Oriented Evaluation.
ECML 2000: 3 |
27 | | Pedro Domingos:
Bayesian Averaging of Classifiers and the Overfitting Problem.
ICML 2000: 223-230 |
26 | | Pedro Domingos:
A Unifeid Bias-Variance Decomposition and its Applications.
ICML 2000: 231-238 |
25 | | Tessa A. Lau,
Pedro Domingos,
Daniel S. Weld:
Version Space Algebra and its Application to Programming by Demonstration.
ICML 2000: 527-534 |
24 | EE | Pedro Domingos,
Geoff Hulten:
Mining high-speed data streams.
KDD 2000: 71-80 |
23 | EE | AnHai Doan,
Pedro Domingos,
Alon Y. Levy:
Learning Source Description for Data Integration.
WebDB (Informal Proceedings) 2000: 81-86 |
1999 |
22 | | Pedro Domingos:
Process-Oriented Estimation of Generalization Error.
IJCAI 1999: 714-721 |
21 | EE | Pedro Domingos:
MetaCost: A General Method for Making Classifiers Cost-Sensitive.
KDD 1999: 155-164 |
20 | | Pedro Domingos:
The Role of Occam's Razor in Knowledge Discovery.
Data Min. Knowl. Discov. 3(4): 409-425 (1999) |
1998 |
19 | | Pedro Domingos:
A Process-Oriented Heuristic for Model Selection.
ICML 1998: 127-135 |
18 | | Pedro Domingos:
Occam's Two Razors: The Sharp and the Blunt.
KDD 1998: 37-43 |
17 | EE | Pedro Domingos:
Knowledge Discovery Via Multiple Models.
Intell. Data Anal. 2(1-4): 187-202 (1998) |
1997 |
16 | | Pedro Domingos:
A Comparison of Model Averaging Methods in Foreign Exchange Prediction.
AAAI/IAAI 1997: 828 |
15 | | Pedro Domingos:
Learning Multiple Models without Sacrificing Comprehensibility.
AAAI/IAAI 1997: 829 |
14 | | Pedro Domingos:
Knowledge Acquisition form Examples Vis Multiple Models.
ICML 1997: 98-106 |
13 | | Pedro Domingos:
Why Does Bagging Work? A Bayesian Account and its Implications.
KDD 1997: 155-158 |
12 | | Pedro Domingos:
Control-Sensitive Feature Selection for Lazy Learners.
Artif. Intell. Rev. 11(1-5): 227-253 (1997) |
11 | | Pedro Domingos,
Michael J. Pazzani:
On the Optimality of the Simple Bayesian Classifier under Zero-One Loss.
Machine Learning 29(2-3): 103-130 (1997) |
1996 |
10 | | Pedro Domingos:
Towards a Unified Approach to Concept Learning.
AAAI/IAAI, Vol. 2 1996: 1361 |
9 | | Pedro Domingos:
Fast Discovery of Simple Rules.
AAAI/IAAI, Vol. 2 1996: 1384 |
8 | | Pedro Domingos:
Multistrategy Learning: A Case Study.
AAAI/IAAI, Vol. 2 1996: 1385 |
7 | | Pedro Domingos,
Michael J. Pazzani:
Simple Bayesian Classifiers Do Not Assume Independence.
AAAI/IAAI, Vol. 2 1996: 1386 |
6 | | Pedro Domingos,
Michael J. Pazzani:
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier.
ICML 1996: 105-112 |
5 | | Pedro Domingos:
Efficient Specific-to-General Rule Induction.
KDD 1996: 319-322 |
4 | | Pedro Domingos:
Linear-Time Rule Induction.
KDD 1996: 96-101 |
3 | | Pedro Domingos:
Unifying Instance-Based and Rule-Based Induction.
Machine Learning 24(2): 141-168 (1996) |
1995 |
2 | | Pedro Domingos:
Rule Induction and Instance-Based Learning: A Unified Approach.
IJCAI 1995: 1226-1232 |
1994 |
1 | | Pedro Domingos:
The RISE System: Conquering without Separating.
ICTAI 1994: 704-707 |