2007 |
49 | EE | Foster J. Provost,
Arun Sundararajan:
Modeling complex networks for electronic commerce.
ACM Conference on Electronic Commerce 2007: 368 |
48 | EE | Foster J. Provost,
Prem Melville,
Maytal Saar-Tsechansky:
Data acquisition and cost-effective predictive modeling: targeting offers for electronic commerce.
ICEC 2007: 389-398 |
47 | EE | Shawndra Hill,
Foster J. Provost,
Chris Volinsky:
Learning and Inference in Massive Social Networks.
MLG 2007 |
2006 |
46 | EE | Claudia Perlich,
Foster J. Provost:
Distribution-based aggregation for relational learning with identifier attributes.
Machine Learning 62(1-2): 65-105 (2006) |
2005 |
45 | EE | Prem Melville,
Foster J. Provost,
Raymond J. Mooney:
An Expected Utility Approach to Active Feature-Value Acquisition.
ICDM 2005: 745-748 |
44 | EE | Sofus A. Macskassy,
Foster J. Provost,
Saharon Rosset:
ROC confidence bands: an empirical evaluation.
ICML 2005: 537-544 |
43 | EE | Abraham Bernstein,
Foster J. Provost,
Shawndra Hill:
Toward Intelligent Assistance for a Data Mining Process: An Ontology-Based Approach for Cost-Sensitive Classification.
IEEE Trans. Knowl. Data Eng. 17(4): 503-518 (2005) |
2004 |
42 | EE | Venkateswarlu Kolluri,
Foster J. Provost,
Bruce G. Buchanan,
Douglas Metzler:
Knowledge Discovery Using Concept-Class Taxonomies.
Australian Conference on Artificial Intelligence 2004: 450-461 |
41 | EE | Prem Melville,
Maytal Saar-Tsechansky,
Foster J. Provost,
Raymond J. Mooney:
Active Feature-Value Acquisition for Classifier Induction.
ICDM 2004: 483-486 |
40 | | Sofus A. Macskassy,
Foster J. Provost:
Confidence Bands for ROC Curves: Methods and an Empirical Study.
ROCAI 2004: 61-70 |
39 | EE | Maytal Saar-Tsechansky,
Foster J. Provost:
Active Sampling for Class Probability Estimation and Ranking.
Machine Learning 54(2): 153-178 (2004) |
2003 |
38 | EE | Claudia Perlich,
Foster J. Provost:
Aggregation-based feature invention and relational concept classes.
KDD 2003: 167-176 |
37 | EE | Gary M. Weiss,
Foster J. Provost:
Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction.
J. Artif. Intell. Res. (JAIR) 19: 315-354 (2003) |
36 | EE | Claudia Perlich,
Foster J. Provost,
Jeffrey S. Simonoff:
Tree Induction vs. Logistic Regression: A Learning-Curve Analysis.
Journal of Machine Learning Research 4: 211-255 (2003) |
35 | EE | Foster J. Provost,
Pedro Domingos:
Tree Induction for Probability-Based Ranking.
Machine Learning 52(3): 199-215 (2003) |
34 | EE | Claudia Perlich,
Foster J. Provost,
Sofus A. Macskassy:
Predicting citation rates for physics papers: constructing features for an ordered probit model.
SIGKDD Explorations 5(2): 154-155 (2003) |
33 | EE | Shawndra Hill,
Foster J. Provost:
The myth of the double-blind review?: author identification using only citations.
SIGKDD Explorations 5(2): 179-184 (2003) |
2001 |
32 | | Maytal Saar-Tsechansky,
Foster J. Provost:
Active Learning for Class Probability Estimation and Ranking.
IJCAI 2001: 911-920 |
31 | | Sofus A. Macskassy,
Haym Hirsh,
Foster J. Provost,
Ramesh Sankaranarayanan,
Vasant Dhar:
Intelligent Information Triage.
SIGIR 2001: 318-326 |
30 | | Ron Kohavi,
Foster J. Provost:
Applications of Data Mining to Electronic Commerce.
Data Min. Knowl. Discov. 5(1/2): 5-10 (2001) |
29 | | Foster J. Provost,
Tom Fawcett:
Robust Classification for Imprecise Environments.
Machine Learning 42(3): 203-231 (2001) |
2000 |
28 | EE | Foster J. Provost,
Tom Fawcett:
Robust Classification for Imprecise Environments
CoRR cs.LG/0009007: (2000) |
27 | EE | Ron Kohavi,
Foster J. Provost:
Applications of Data Mining to Electronic Commerce
CoRR cs.LG/0010006: (2000) |
26 | | Vasant Dhar,
Dashin Chou,
Foster J. Provost:
Discovering Interesting Patterns for Investment Decision Making with GLOWER - A Genetic Learner Overlaid with Entropy Reduction.
Data Min. Knowl. Discov. 4(4): 251-280 (2000) |
1999 |
25 | EE | Foster J. Provost,
David Jensen,
Tim Oates:
Efficient Progressive Sampling.
KDD 1999: 23-32 |
24 | EE | Tom Fawcett,
Foster J. Provost:
Activity Monitoring: Noticing Interesting Changes in Behavior.
KDD 1999: 53-62 |
23 | | Foster J. Provost,
Venkateswarlu Kolluri:
A Survey of Methods for Scaling Up Inductive Algorithms.
Data Min. Knowl. Discov. 3(2): 131-169 (1999) |
22 | | Foster J. Provost,
Andrea Pohoreckyj Danyluk:
Problem Definition, Data Cleaning, and Evaluation: A Classifier Learning Case Study.
Informatica (Slovenia) 23(1): (1999) |
1998 |
21 | | Foster J. Provost,
Tom Fawcett:
Robust Classification Systems for Imprecise Environments.
AAAI/IAAI 1998: 706-713 |
20 | | Foster J. Provost,
Tom Fawcett,
Ron Kohavi:
The Case against Accuracy Estimation for Comparing Induction Algorithms.
ICML 1998: 445-453 |
19 | | Tom Fawcett,
Ira J. Haimowitz,
Foster J. Provost,
Salvatore J. Stolfo:
AI Approaches to Fraud Detection and Risk Management.
AI Magazine 19(2): 107-108 (1998) |
18 | | Foster J. Provost,
Ron Kohavi:
Guest Editors' Introduction: On Applied Research in Machine Learning.
Machine Learning 30(2-3): 127-132 (1998) |
1997 |
17 | | John M. Aronis,
Foster J. Provost:
Increasing the Efficiency of Data Mining Algorithms with Breadth-First Marker Propagation.
KDD 1997: 119-122 |
16 | | Foster J. Provost,
Venkateswarlu Kolluri:
Scaling Up Inductive Algorithms: An Overview.
KDD 1997: 239-242 |
15 | | Foster J. Provost,
Tom Fawcett:
Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions.
KDD 1997: 43-48 |
14 | | Tom Fawcett,
Foster J. Provost:
Adaptive Fraud Detection.
Data Min. Knowl. Discov. 1(3): 291-316 (1997) |
1996 |
13 | | Foster J. Provost,
Daniel N. Hennessy:
Scaling Up: Distributed Machine Learning with Cooperation.
AAAI/IAAI, Vol. 1 1996: 74-79 |
12 | | John M. Aronis,
Foster J. Provost,
Bruce G. Buchanan:
Exploiting Background Knowledge in Automated Discovery.
KDD 1996: 355-358 |
11 | | Tom Fawcett,
Foster J. Provost:
Combining Data Mining and Machine Learning for Effective User Profiling.
KDD 1996: 8-13 |
10 | | Foster J. Provost,
John M. Aronis:
Scaling Up Inductive Learning with Massive Parallelism.
Machine Learning 23(1): 33-46 (1996) |
1995 |
9 | | Foster J. Provost,
Bruce G. Buchanan:
Inductive Policy: The Pragmatics of Bias Selection.
Machine Learning 20(1-2): 35-61 (1995) |
1994 |
8 | | Foster J. Provost,
Daniel N. Hennessy:
Distributed Machine Learning: Scaling Up with Coarse-grained Parallelism.
ISMB 1994: 340-347 |
7 | | John M. Aronis,
Foster J. Provost:
Efficiently Constructing Relational Features from Background Knowledge for Inductive Machine Learning.
KDD Workshop 1994: 347-358 |
1993 |
6 | | Foster J. Provost:
Iterative Weakening: Optimal and Near-Optimal Policies for the Selection of Search Bias.
AAAI 1993: 749-755 |
5 | | Andrea Pohoreckyj Danyluk,
Foster J. Provost:
Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network.
ICML 1993: 81-88 |
1992 |
4 | | Foster J. Provost,
Bruce G. Buchanan:
Inductive Policy.
AAAI 1992: 255-261 |
3 | | Foster J. Provost,
Bruce G. Buchanan:
Inductive Strengthening: the Effects of a Simple Heuristic for Restricting Hypothesis Space Search.
AII 1992: 294-304 |
2 | | Foster J. Provost:
ClimBS: Searching the Bias Space.
ICTAI 1992: 146-153 |
1 | | Foster J. Provost,
Rami G. Melhem:
A Distributed Algorithm for Embedding Trees in Hypercubes with Modifications for Run-Time Fault Tolerance.
J. Parallel Distrib. Comput. 14(1): 85-89 (1992) |