| 2008 |
| 49 | | Hendrik Blockeel,
Jan Ramon,
Jude W. Shavlik,
Prasad Tadepalli:
Inductive Logic Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers
Springer 2008 |
| 48 | EE | Neville Mehta,
Soumya Ray,
Prasad Tadepalli,
Thomas G. Dietterich:
Automatic discovery and transfer of MAXQ hierarchies.
ICML 2008: 648-655 |
| 47 | EE | Sriraam Natarajan,
Hung H. Bui,
Prasad Tadepalli,
Kristian Kersting,
Weng-Keen Wong:
Logical Hierarchical Hidden Markov Models for Modeling User Activities.
ILP 2008: 192-209 |
| 46 | EE | Hendrik Blockeel,
Jude W. Shavlik,
Prasad Tadepalli:
Guest editors' introduction: special issue on inductive logic programming (ILP-2007).
Machine Learning 73(1): 1-2 (2008) |
| 45 | EE | Thomas G. Dietterich,
Pedro Domingos,
Lise Getoor,
Stephen Muggleton,
Prasad Tadepalli:
Structured machine learning: the next ten years.
Machine Learning 73(1): 3-23 (2008) |
| 44 | EE | Neville Mehta,
Sriraam Natarajan,
Prasad Tadepalli,
Alan Fern:
Transfer in variable-reward hierarchical reinforcement learning.
Machine Learning 73(3): 289-312 (2008) |
| 2007 |
| 43 | EE | Aaron Wilson,
Alan Fern,
Soumya Ray,
Prasad Tadepalli:
Multi-task reinforcement learning: a hierarchical Bayesian approach.
ICML 2007: 1015-1022 |
| 42 | EE | Charles Parker,
Alan Fern,
Prasad Tadepalli:
Learning for efficient retrieval of structured data with noisy queries.
ICML 2007: 729-736 |
| 41 | EE | Alan Fern,
Sriraam Natarajan,
Kshitij Judah,
Prasad Tadepalli:
A Decision-Theoretic Model of Assistance.
IJCAI 2007: 1879-1884 |
| 40 | EE | Sriraam Natarajan,
Prasad Tadepalli,
Alan Fern:
A Relational Hierarchical Model for Decision-Theoretic Assistance.
ILP 2007: 175-190 |
| 39 | | Sriraam Natarajan,
Kshitij Judah,
Prasad Tadepalli,
Alan Fern:
A Decision-Theoretic Model of Assistance - Evaluation, Extensions and Open Problems.
Interaction Challenges for Intelligent Assistants 2007: 90-97 |
| 38 | EE | Sriraam Natarajan,
Prasad Tadepalli,
Alan Fern:
Exploiting prior knowledge in Intelligent Assistants - Combining relational models with hierarchies.
Probabilistic, Logical and Relational Learning - A Further Synthesis 2007 |
| 2006 |
| 37 | | Charles Parker,
Alan Fern,
Prasad Tadepalli:
Gradient Boosting for Sequence Alignment.
AAAI 2006 |
| 36 | EE | Scott Proper,
Prasad Tadepalli:
Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery.
ECML 2006: 735-742 |
| 2005 |
| 35 | EE | Sriraam Natarajan,
Prasad Tadepalli:
Dynamic preferences in multi-criteria reinforcement learning.
ICML 2005: 601-608 |
| 34 | EE | Sriraam Natarajan,
Prasad Tadepalli,
Eric Altendorf,
Thomas G. Dietterich,
Alan Fern,
Angelo C. Restificar:
Learning first-order probabilistic models with combining rules.
ICML 2005: 609-616 |
| 2002 |
| 33 | | Sandeep Seri,
Prasad Tadepalli:
Model-based Hierarchical Average-reward Reinforcement Learning.
ICML 2002: 562-569 |
| 32 | | Michael Chisholm,
Prasad Tadepalli:
Learning Decision Rules by Randomized Iterative Local Search.
ICML 2002: 75-82 |
| 2001 |
| 31 | | Thomas R. Amoth,
Paul Cull,
Prasad Tadepalli:
On Exact Learning of Unordered Tree Patterns.
Machine Learning 44(3): 211-243 (2001) |
| 1999 |
| 30 | EE | Thomas R. Amoth,
Paul Cull,
Prasad Tadepalli:
Exact Learning of Unordered Tree Patterns from Queries.
COLT 1999: 323-332 |
| 29 | | Chandra Reddy,
Prasad Tadepalli:
Learning Horn Definitions: Theory and an Application to Planning.
New Generation Comput. 17(1): 77-98 (1999) |
| 1998 |
| 28 | EE | Thomas R. Amoth,
Paul Cull,
Prasad Tadepalli:
Exact Learning of Tree Patterns from Queries and Counterexamples.
COLT 1998: 175-186 |
| 27 | | Chandra Reddy,
Prasad Tadepalli:
Learning First-Order Acyclic Horn Programs from Entailment.
ICML 1998: 472-480 |
| 26 | | Chandra Reddy,
Prasad Tadepalli:
Learning First-Order Acyclic Horn Programs from Entailment.
ILP 1998: 23-37 |
| 25 | EE | Prasad Tadepalli,
DoKyeong Ok:
Model-Based Average Reward Reinforcement Learning.
Artif. Intell. 100(1-2): 177-223 (1998) |
| 24 | | Prasad Tadepalli,
Stuart J. Russell:
Learning from Examples and Membership Queries with Structured Determinations.
Machine Learning 32(3): 245-295 (1998) |
| 1997 |
| 23 | | Ray Liere,
Prasad Tadepalli:
Active Learning with Committees for Text Categorization.
AAAI/IAAI 1997: 591-596 |
| 22 | | Ray Liere,
Prasad Tadepalli:
Active Learning with Committees.
AAAI/IAAI 1997: 838 |
| 21 | | Chandra Reddy,
Prasad Tadepalli:
Learning Goal-Decomposition Rules Using Exercises.
AAAI/IAAI 1997: 843 |
| 20 | | Chandra Reddy,
Prasad Tadepalli:
Learning Goal-Decomposition Rules using Exercises.
ICML 1997: 278-286 |
| 19 | | Prasad Tadepalli,
Thomas G. Dietterich:
Hierarchical Explanation-Based Reinforcement Learning.
ICML 1997: 358-366 |
| 18 | | Chandra Reddy,
Prasad Tadepalli:
Learning Horn Definitions with Equivalence and Membership Queries.
ILP 1997: 243-255 |
| 1996 |
| 17 | | DoKyeong Ok,
Prasad Tadepalli:
Auto-Exploratory Average Reward Reinforcement Learning.
AAAI/IAAI, Vol. 1 1996: 881-887 |
| 16 | | Chandra Reddy,
Prasad Tadepalli,
Silvana Roncagliolo:
Theory-guided Empirical Speedup Learning of Goal Decomposition Rules.
ICML 1996: 409-417 |
| 15 | | Prasad Tadepalli,
DoKyeong Ok:
Scaling Up Average Reward Reinforcement Learning by Approximating the Domain Models and the Value Function.
ICML 1996: 471-479 |
| 14 | EE | Prasad Tadepalli,
Balas K. Natarajan:
A Formal Framework for Speedup Learning from Problems and Solutions
CoRR cs.AI/9605105: (1996) |
| 13 | | Prasad Tadepalli,
Balas K. Natarajan:
A Formal Framework for Speedup Learning from Problems and Solutions.
J. Artif. Intell. Res. (JAIR) 4: 445-475 (1996) |
| 1994 |
| 12 | | Sridhar Mahadevan,
Prasad Tadepalli:
Quantifying Prior Determination Knowledge Using the PAC Learning Model.
Machine Learning 17(1): 69-105 (1994) |
| 1993 |
| 11 | | Prasad Tadepalli:
Learning from Queries and Examples with Tree-structured Bias.
ICML 1993: 322-329 |
| 10 | | Sridhar Mahadevan,
Tom M. Mitchell,
Jack Mostow,
Louis I. Steinberg,
Prasad Tadepalli:
An Apprentice-Based Approach to Knowledge Acquisition.
Artif. Intell. 64(1): 1-52 (1993) |
| 1992 |
| 9 | | Prasad Tadepalli:
A Theory of Unsupervised Speedup Learning.
AAAI 1992: 229-234 |
| 1991 |
| 8 | | Prasad Tadepalli:
A Formalization of Explanation-Based Macro-operator Learning.
IJCAI 1991: 616-622 |
| 7 | | Prasad Tadepalli:
Learning with Incrutable Theories.
ML 1991: 544-548 |
| 1990 |
| 6 | | Sholom M. Weiss,
Robert S. Galen,
Prasad Tadepalli:
Maximizing the Predictive Value of Production Rules.
Artif. Intell. 45(1-2): 47-71 (1990) |
| 1989 |
| 5 | | Prasad Tadepalli:
Lazy ExplanationBased Learning: A Solution to the Intractable Theory Problem.
IJCAI 1989: 694-700 |
| 4 | | Prasad Tadepalli:
Planning Approximate Plans for Use in the Real World.
ML 1989: 224-228 |
| 1988 |
| 3 | | Sridhar Mahadevan,
Prasad Tadepalli:
On the Tractability of Learning from Incomplete Theories.
ML 1988: 235-241 |
| 2 | | Balas K. Natarajan,
Prasad Tadepalli:
Two New Frameworks for Learning.
ML 1988: 402-415 |
| 1987 |
| 1 | | Sholom M. Weiss,
Robert S. Galen,
Prasad Tadepalli:
Optimizing the Predictive Value of Diagnostic Decision Rules.
AAAI 1987: 521-527 |