2008 |
37 | EE | Yangqiu Song,
WenYen Chen,
Hongjie Bai,
Chih-Jen Lin,
Edward Y. Chang:
Parallel Spectral Clustering.
ECML/PKDD (2) 2008: 374-389 |
36 | EE | Cho-Jui Hsieh,
Kai-Wei Chang,
Chih-Jen Lin,
S. Sathiya Keerthi,
S. Sundararajan:
A dual coordinate descent method for large-scale linear SVM.
ICML 2008: 408-415 |
35 | EE | S. Sathiya Keerthi,
S. Sundararajan,
Kai-Wei Chang,
Cho-Jui Hsieh,
Chih-Jen Lin:
A sequential dual method for large scale multi-class linear svms.
KDD 2008: 408-416 |
34 | EE | Hsi-Che Liu,
Chien-Yu Chen,
Yu-Ting Liu,
Cheng-Bang Chu,
Der-Cherng Liang,
Lee-Yung Shih,
Chih-Jen Lin:
Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods.
Journal of Biomedical Informatics 41(4): 570-579 (2008) |
2007 |
33 | EE | Chih-Jen Lin,
Ruby C. Weng,
S. Sathiya Keerthi:
Trust region Newton methods for large-scale logistic regression.
ICML 2007: 561-568 |
32 | EE | Chih-Jen Lin:
On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization.
IEEE Transactions on Neural Networks 18(6): 1589-1596 (2007) |
31 | EE | Hsuan-Tien Lin,
Chih-Jen Lin,
Ruby C. Weng:
A note on Platt's probabilistic outputs for support vector machines.
Machine Learning 68(3): 267-276 (2007) |
30 | EE | Chih-Jen Lin:
Projected Gradient Methods for Nonnegative Matrix Factorization.
Neural Computation 19(10): 2756-2779 (2007) |
2006 |
29 | EE | Tzu-Kuo Huang,
Chih-Jen Lin,
Ruby C. Weng:
Ranking individuals by group comparisons.
ICML 2006: 425-432 |
28 | EE | Pai-Hsuen Chen,
Rong-En Fan,
Chih-Jen Lin:
A study on SMO-type decomposition methods for support vector machines.
IEEE Transactions on Neural Networks 17(4): 893-908 (2006) |
27 | EE | Tzu-Kuo Huang,
Ruby C. Weng,
Chih-Jen Lin:
Generalized Bradley-Terry Models and Multi-Class Probability Estimates.
Journal of Machine Learning Research 7: 85-115 (2006) |
2005 |
26 | EE | Pai-Hsuen Chen,
Rong-En Fan,
Chih-Jen Lin:
Training Support Vector Machines via SMO-Type Decomposition Methods.
ALT 2005: 45-62 |
25 | EE | Pai-Hsuen Chen,
Rong-En Fan,
Chih-Jen Lin:
Training Support Vector Machines via SMO-Type Decomposition Methods.
Discovery Science 2005: 15 |
24 | EE | Rong-En Fan,
Pai-Hsuen Chen,
Chih-Jen Lin:
Working Set Selection Using Second Order Information for Training Support Vector Machines.
Journal of Machine Learning Research 6: 1889-1918 (2005) |
23 | EE | Ming-Wei Chang,
Chih-Jen Lin:
Leave-One-Out Bounds for Support Vector Regression Model Selection.
Neural Computation 17(5): 1188-1222 (2005) |
2004 |
22 | EE | Tzu-Kuo Huang,
Chih-Jen Lin,
Ruby C. Weng:
A Generalized Bradley-Terry Model: From Group Competition to Individual Skill.
NIPS 2004 |
21 | EE | Ting-Fan Wu,
Chih-Jen Lin,
Ruby C. Weng:
Probability Estimates for Multi-class Classification by Pairwise Coupling.
Journal of Machine Learning Research 5: 975-1005 (2004) |
20 | EE | Wei-Chun Kao,
Kai-Min Chung,
Chia-Liang Sun,
Chih-Jen Lin:
Decomposition Methods for Linear Support Vector Machines.
Neural Computation 16(8): 1689-1704 (2004) |
2003 |
19 | EE | Ting-Fan Wu,
Chih-Jen Lin,
Ruby C. Weng:
Probability Estimates for Multi-Class Classification by Pairwise Coupling.
NIPS 2003 |
18 | EE | Kai-Min Chung,
Wei-Chun Kao,
Chia-Liang Sun,
Li-Lun Wang,
Chih-Jen Lin:
Radius Margin Bounds for Support Vector Machines with the RBF Kernel.
Neural Computation 15(11): 2643-2681 (2003) |
17 | EE | S. Sathiya Keerthi,
Chih-Jen Lin:
Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel.
Neural Computation 15(7): 1667-1689 (2003) |
16 | EE | Colin Campbell,
Chih-Jen Lin,
S. Sathiya Keerthi,
V. David Sánchez A.:
Special issue on support vector machines.
Neurocomputing 55(1-2): 1-3 (2003) |
2002 |
15 | EE | Ming-Wei Chang,
Chih-Jen Lin,
Ruby C. Weng:
Analysis of Nonstationary Time Series Using Support Vector Machines.
SVM 2002: 160-170 |
14 | | Chih-Wei Hsu,
Chih-Jen Lin:
A Simple Decomposition Method for Support Vector Machines.
Machine Learning 46(1-3): 291-314 (2002) |
13 | EE | Shuo-Peng Liao,
Hsuan-Tien Lin,
Chih-Jen Lin:
A Note on the Decomposition Methods for Support Vector Regression.
Neural Computation 14(6): 1267-1281 (2002) |
12 | EE | Chih-Chung Chang,
Chih-Jen Lin:
Training v -Support Vector Regression: Theory and Algorithms.
Neural Computation 14(8): 1959-1977 (2002) |
2001 |
11 | EE | Soon-Yi Wu,
Shu-Cherng Fang,
Chih-Jen Lin:
Solving General Capacity Problem by Relaxed Cutting Plane Approach.
Annals OR 103(1-4): 193-211 (2001) |
10 | | Jinn-Moon Yang,
Jorng-Tzong Horng,
Chih-Jen Lin,
Cheng-Yan Kao:
Optical Coating Designs Using the Family Competition Evolutionary Algorithm.
Evolutionary Computation 9(4): 421-443 (2001) |
9 | | Chih-Jen Lin:
Formulations of Support Vector Machines: A Note from an Optimization Point of View.
Neural Computation 13(2): 307-317 (2001) |
8 | | Chih-Chung Chang,
Chih-Jen Lin:
Training nu-Support Vector Classifiers: Theory and Algorithms.
Neural Computation 13(9): 2119-2147 (2001) |
1998 |
7 | EE | Huan-Chih Tsai,
Kwang-Ting Cheng,
Chih-Jen Lin,
Sudipta Bhawmik:
Efficient test-point selection for scan-based BIST.
IEEE Trans. VLSI Syst. 6(4): 667-676 (1998) |
1997 |
6 | EE | Huan-Chih Tsai,
Kwang-Ting Cheng,
Chih-Jen Lin,
Sudipta Bhawmik:
A Hybrid Algorithm for Test Point Selection for Scan-Based BIST.
DAC 1997: 478-483 |
1995 |
5 | | Kwang-Ting Cheng,
Chih-Jen Lin:
Timing-Driven Test Point Insertion for Full-Scan and Partial-Scan BIST.
ITC 1995: 506-514 |
4 | EE | Chih-Jen Lin,
Yervant Zorian,
Sudipta Bhawmik:
Integration of partial scan and built-in self-test.
J. Electronic Testing 7(1-2): 125-137 (1995) |
1993 |
3 | | Chih-Jen Lin,
Yervant Zorian,
Sudipta Bhawmik:
PSBIST: A Partial-Scan Based Built-In Self-Test Scheme.
ITC 1993: 507-516 |
2 | | Ching-Wen Hsue,
Chih-Jen Lin:
Built-In Current Sensor for IDDQ Test in CMOS.
ITC 1993: 635-641 |
1991 |
1 | EE | Tapan J. Chakraborty,
Sudipta Bhawmik,
Robert Bencivenga,
Chih-Jen Lin:
Enhanced Controllability for IDDQ Test Sets Using Partial Scan.
DAC 1991: 278-281 |