2009 |
97 | EE | Bee-Chung Chen,
Raghu Ramakrishnan,
Jude W. Shavlik,
Pradeep Tamma:
Bellwether analysis: Searching for cost-effective query-defined predictors in large databases.
TKDD 3(1): (2009) |
2008 |
96 | | Hendrik Blockeel,
Jan Ramon,
Jude W. Shavlik,
Prasad Tadepalli:
Inductive Logic Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers
Springer 2008 |
95 | EE | Lisa Torrey,
Jude W. Shavlik,
Trevor Walker,
Richard Maclin:
Rule Extraction for Transfer Learning.
Rule Extraction from Support Vector Machines 2008: 67-82 |
94 | EE | Hendrik Blockeel,
Jude W. Shavlik,
Prasad Tadepalli:
Guest editors' introduction: special issue on inductive logic programming (ILP-2007).
Machine Learning 73(1): 1-2 (2008) |
2007 |
93 | | Richard Maclin,
Edward W. Wild,
Jude W. Shavlik,
Lisa Torrey,
Trevor Walker:
Refining Rules Incorporated into Knowledge-Based Support Vector Learners Via Successive Linear Programming.
AAAI 2007: 584-589 |
92 | EE | Frank DiMaio,
Ameet Soni,
George N. Phillips,
Jude W. Shavlik:
Improved Methods for Template-Matching in Electron-Density Maps Using Spherical Harmonics.
BIBM 2007: 258-265 |
91 | EE | Mark Goadrich,
Jude W. Shavlik:
Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates.
ILP 2007: 122-131 |
90 | EE | Louis Oliphant,
Jude W. Shavlik:
Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming.
ILP 2007: 191-199 |
89 | EE | Lisa Torrey,
Jude W. Shavlik,
Trevor Walker,
Richard Maclin:
Relational Macros for Transfer in Reinforcement Learning.
ILP 2007: 254-268 |
88 | EE | Trevor Walker,
Lisa Torrey,
Jude W. Shavlik,
Richard Maclin:
Building Relational World Models for Reinforcement Learning.
ILP 2007: 280-291 |
87 | EE | Frank DiMaio,
Dmitry A. Kondrashov,
Eduard Bitto,
Ameet Soni,
Craig A. Bingman,
George N. Phillips Jr.,
Jude W. Shavlik:
Creating protein models from electron-density maps using particle-filtering methods.
Bioinformatics 23(21): 2851-2858 (2007) |
2006 |
86 | | Richard Maclin,
Jude W. Shavlik,
Trevor Walker,
Lisa Torrey:
A Simple and Effective Method for Incorporating Advice into Kernel Methods.
AAAI 2006 |
85 | EE | Lisa Torrey,
Jude W. Shavlik,
Trevor Walker,
Richard Maclin:
Skill Acquisition Via Transfer Learning and Advice Taking.
ECML 2006: 425-436 |
84 | EE | Frank DiMaio,
Jude W. Shavlik:
Belief Propagation in Large, Highly Connected Graphs for 3D Part-Based Object Recognition.
ICDM 2006: 845-850 |
83 | EE | Frank DiMaio,
Jude W. Shavlik,
George N. Phillips:
A probabilistic approach to protein backbone tracing in electron density maps.
ISMB (Supplement of Bioinformatics) 2006: 81-89 |
82 | EE | Bee-Chung Chen,
Raghu Ramakrishnan,
Jude W. Shavlik,
Pradeep Tamma:
Bellwether Analysis: Predicting Global Aggregates from Local Regions.
VLDB 2006: 655-666 |
81 | EE | Mark Goadrich,
Louis Oliphant,
Jude W. Shavlik:
Gleaner: Creating ensembles of first-order clauses to improve recall-precision curves.
Machine Learning 64(1-3): 231-261 (2006) |
2005 |
80 | | Richard Maclin,
Jude W. Shavlik,
Lisa Torrey,
Trevor Walker,
Edward W. Wild:
Giving Advice about Preferred Actions to Reinforcement Learners Via Knowledge-Based Kernel Regression.
AAAI 2005: 819-824 |
79 | EE | Lisa Torrey,
Trevor Walker,
Jude W. Shavlik,
Richard Maclin:
Using Advice to Transfer Knowledge Acquired in One Reinforcement Learning Task to Another.
ECML 2005: 412-424 |
78 | EE | Jesse Davis,
Elizabeth S. Burnside,
Inês de Castro Dutra,
David Page,
Raghu Ramakrishnan,
Vítor Santos Costa,
Jude W. Shavlik:
View Learning for Statistical Relational Learning: With an Application to Mammography.
IJCAI 2005: 677-683 |
77 | EE | Héctor Corrada Bravo,
David Page,
Raghu Ramakrishnan,
Jude W. Shavlik,
Vítor Santos Costa:
A Framework for Set-Oriented Computation in Inductive Logic Programming and Its Application in Generalizing Inverse Entailment.
ILP 2005: 69-86 |
76 | EE | Lisa Torrey,
Trevor Walker,
Jude W. Shavlik,
Richard Maclin:
Knowledge transfer via advice taking.
K-CAP 2005: 217-218 |
2004 |
75 | EE | Michael Molla,
Jude W. Shavlik,
Thomas Albert,
Todd Richmond,
Steven Smith:
A Self-Tuning Method for One-Chip SNP Identification.
CSB 2004: 69-79 |
74 | EE | Jude W. Shavlik:
Scaling Up ILP: Experiences with Extracting Relations from Biomedical Text.
ILP 2004: 7 |
73 | EE | Frank DiMaio,
Jude W. Shavlik:
Learning an Approximation to Inductive Logic Programming Clause Evaluation.
ILP 2004: 80-97 |
72 | EE | Mark Goadrich,
Louis Oliphant,
Jude W. Shavlik:
Learning Ensembles of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical Information Extraction.
ILP 2004: 98-115 |
71 | EE | Jude W. Shavlik,
Mark Shavlik:
Selection, combination, and evaluation of effective software sensors for detecting abnormal computer usage.
KDD 2004: 276-285 |
70 | EE | Frank DiMaio,
Jude W. Shavlik,
George N. Phillips:
Pictorial Structures for Molecular Modeling: Interpreting Density Maps.
NIPS 2004 |
69 | | Michael Molla,
Michael Waddell,
David Page,
Jude W. Shavlik:
Using Machine Learning to Design and Interpret Gene-Expression Microarrays.
AI Magazine 25(1): 23-44 (2004) |
68 | EE | Olvi L. Mangasarian,
Jude W. Shavlik,
Edward W. Wild:
Knowledge-Based Kernel Approximation.
Journal of Machine Learning Research 5: 1127-1141 (2004) |
2003 |
67 | EE | Glenn Fung,
Olvi L. Mangasarian,
Jude W. Shavlik:
Knowledge-Based Nonlinear Kernel Classifiers.
COLT 2003: 102-113 |
66 | EE | Inês de Castro Dutra,
David Page,
Vítor Santos Costa,
Jude W. Shavlik,
Michael Waddell:
Toward Automatic Management of Embarrassingly Parallel Applications.
Euro-Par 2003: 509-516 |
65 | EE | Fernanda Araujo Baião,
Marta Mattoso,
Jude W. Shavlik,
Gerson Zaverucha:
Applying Theory Revision to the Design of Distributed Databases.
ILP 2003: 57-74 |
64 | | Joseph Bockhorst,
Mark Craven,
David Page,
Jude W. Shavlik,
Jeremy D. Glasner:
A Bayesian Network Approach to Operon Prediction.
Bioinformatics 19(10): 1227-1235 (2003) |
63 | EE | Tina Eliassi-Rad,
Jude W. Shavlik:
A System for Building Intelligent Agents that Learn to Retrieve and Extract Information.
User Model. User-Adapt. Interact. 13(1-2): 35-88 (2003) |
2002 |
62 | EE | Inês de Castro Dutra,
David Page,
Vítor Santos Costa,
Jude W. Shavlik:
An Empirical Evaluation of Bagging in Inductive Logic Programming.
ILP 2002: 48-65 |
61 | | J. B. Tobler,
Michael Molla,
Emile F. Nuwaysir,
R. D. Green,
Jude W. Shavlik:
Evaluating machine learning approaches for aiding probe selection for gene-expression arrays.
ISMB 2002: 164-171 |
60 | | Michael Molla,
Peter Andreae,
Jeremy D. Glasner,
Frederick R. Blattner,
Jude W. Shavlik:
Interpreting Microarray Expression Data Using Text Annotating the Genes.
JCIS 2002: 1224-1230 |
59 | EE | Glenn Fung,
Olvi L. Mangasarian,
Jude W. Shavlik:
Knowledge-Based Support Vector Machine Classifiers.
NIPS 2002: 521-528 |
58 | | Yolanda Gil,
Mark A. Musen,
Jude W. Shavlik:
Report on the First International Conference on Knowledge Capture (K-CAP).
AI Magazine 23(4): 107-108 (2002) |
57 | EE | Michael Molla,
Peter Andreae,
Jeremy D. Glasner,
Frederick R. Blattner,
Jude W. Shavlik:
Interpreting microarray expression data using text annotating the genes.
Inf. Sci. 146(1-4): 75-88 (2002) |
2001 |
56 | | Tina Eliassi-Rad,
Jude W. Shavlik:
A Theory-Refinement Approach to Information Extraction.
ICML 2001: 130-137 |
2000 |
55 | | Mark Craven,
David Page,
Jude W. Shavlik,
Joseph Bockhorst,
Jeremy D. Glasner:
Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes.
ICML 2000: 199-206 |
54 | | Mark Craven,
David Page,
Jude W. Shavlik,
Joseph Bockhorst,
Jeremy D. Glasner:
A Probabilistic Learning Approach to Whole-Genome Operon Prediction.
ISMB 2000: 116-127 |
53 | EE | Jeremy Goecks,
Jude W. Shavlik:
Learning users' interests by unobtrusively observing their normal behavior.
IUI 2000: 129-132 |
1999 |
52 | EE | Jude W. Shavlik,
Susan Calcari,
Tina Eliassi-Rad,
Jack Solock:
An Instructable, Adaptive Interface for Discovering and Monitoring Information on the World-Wide Web.
IUI 1999: 157-160 |
51 | EE | Jude W. Shavlik,
Lawrence Birnbaum,
William R. Swartout,
Eric Horvitz,
Barbara Hayes-Roth:
Bridging Science and Applications (Panel).
IUI 1999: 45-46 |
50 | | Carolyn F. Allex,
Jude W. Shavlik,
Frederick R. Blattner:
Neural network input representations that produce accurate consensus sequences from DNA fragment assemblies.
Bioinformatics 15(9): 723-728 (1999) |
1998 |
49 | | Jude W. Shavlik:
Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison, Wisconson, USA, July 24-27, 1998
Morgan Kaufmann 1998 |
1997 |
48 | | Carolyn F. Allex,
Schuyler F. Baldwin,
Jude W. Shavlik,
Frederick R. Blattner:
Increasing Consensus Accuracy in DNA Fragment Assemblies by Incorporating Fluorescent Trace Representations.
ISMB 1997: 3-14 |
47 | EE | David W. Opitz,
Jude W. Shavlik:
Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies
CoRR cs.AI/9705102: (1997) |
46 | EE | Mark Craven,
Jude W. Shavlik:
Understanding Time-Series Networks: A Case Study in Rule Extraction.
Int. J. Neural Syst. 8(4): 373-384 (1997) |
45 | | David W. Opitz,
Jude W. Shavlik:
Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies.
J. Artif. Intell. Res. (JAIR) 6: 177-209 (1997) |
1996 |
44 | | Carolyn F. Allex,
Schuyler F. Baldwin,
Jude W. Shavlik,
Frederick R. Blattner:
Improving the Quality of Automatic DNA Sequence Assembly Using Fluorescent Trace-Data Classifications.
ISMB 1996: 3-14 |
43 | | Kevin J. Cherkauer,
Jude W. Shavlik:
Growing Simpler Decision Trees to Facilitate Knowledge Discovery.
KDD 1996: 315-318 |
42 | EE | David W. Opitz,
Jude W. Shavlik:
Actively Searching for an Effective Neural Network Ensemble.
Connect. Sci. 8(3): 337-354 (1996) |
41 | | Richard Maclin,
Jude W. Shavlik:
Creating Advice-Taking Reinforcement Learners.
Machine Learning 22(1-3): 251-281 (1996) |
1995 |
40 | | Richard Maclin,
Jude W. Shavlik:
Combining the Predictions of Multiple Classifiers: Using Competitive Learning to Initialize Neural Networks.
IJCAI 1995: 524-531 |
39 | EE | Mark Craven,
Jude W. Shavlik:
Extracting Tree-Structured Representations of Trained Networks.
NIPS 1995: 24-30 |
38 | EE | Kevin J. Cherkauer,
Jude W. Shavlik:
Rapid Quality Estimation of Neural Network Input Representations.
NIPS 1995: 45-51 |
37 | EE | David W. Opitz,
Jude W. Shavlik:
Generating Accurate and Diverse Members of a Neural-Network Ensemble.
NIPS 1995: 535-541 |
36 | EE | David W. Opitz,
Jude W. Shavlik:
Dynamically adding symbolically meaningful nodes to knowledge-based neural networks.
Knowl.-Based Syst. 8(6): 301-311 (1995) |
35 | | Jude W. Shavlik,
Lawrence Hunter,
David B. Searls:
Introduction.
Machine Learning 21(1-2): 5-9 (1995) |
1994 |
34 | | Richard Maclin,
Jude W. Shavlik:
Incorporating Advice into Agents that Learn from Reinforcements.
AAAI 1994: 694-699 |
33 | | David W. Opitz,
Jude W. Shavlik:
Using Genetic Search to Refine Knowledge-based Neural Networks.
ICML 1994: 208-216 |
32 | | Mark Craven,
Jude W. Shavlik:
Using Sampling and Queries to Extract Rules from Trained Neural Networks.
ICML 1994: 37-45 |
31 | | David B. Searls,
Jude W. Shavlik,
Lawrence Hunter:
The First International Conference on Intelligent Systems for Molecular Biology.
AI Magazine 15(1): 12-13 (1994) |
30 | | Geoffrey G. Towell,
Jude W. Shavlik:
Knowledge-Based Artificial Neural Networks.
Artif. Intell. 70(1-2): 119-165 (1994) |
29 | EE | Mark Craven,
Jude W. Shavlik:
Machine Learning Approaches to Gene Recognition.
IEEE Expert 9(2): 2-10 (1994) |
28 | | Jude W. Shavlik:
Combining Symbolic and Neural Learning.
Machine Learning 14(1): 321-331 (1994) |
1993 |
27 | | Lawrence Hunter,
David B. Searls,
Jude W. Shavlik:
Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology, Bethesda, MD, USA, July 1993
AAAI 1993 |
26 | | Mark Craven,
Jude W. Shavlik:
Learning Symbolic Rules Using Artificial Neural Networks.
ICML 1993: 73-80 |
25 | | Mark Craven,
Jude W. Shavlik:
Learning to Represent Codons: A Challenge Problem for Constructive Induction.
IJCAI 1993: 1319-1324 |
24 | | David W. Opitz,
Jude W. Shavlik:
Heuristically Expanding Knowledge-Based Neural Networks.
IJCAI 1993: 1360-1365 |
23 | | Kevin J. Cherkauer,
Jude W. Shavlik:
Protein Structure Prediction: Selecting Salient Features from Large Candidate Pools.
ISMB 1993: 74-82 |
22 | | Richard Maclin,
Jude W. Shavlik:
Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding.
Machine Learning 11: 195-215 (1993) |
21 | | Geoffrey G. Towell,
Jude W. Shavlik:
Extracting Refined Rules from Knowledge-Based Neural Networks.
Machine Learning 13: 71-101 (1993) |
1992 |
20 | | Richard Maclin,
Jude W. Shavlik:
Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding.
AAAI 1992: 165-170 |
19 | | Geoffrey G. Towell,
Jude W. Shavlik:
Using Symbolic Learning to Improve Knowledge-Based Neural Networks.
AAAI 1992: 177-182 |
1991 |
18 | | Geoffrey G. Towell,
Mark Craven,
Jude W. Shavlik:
Constructive Induction in Knowledge-Based Neural Networks.
ML 1991: 213-217 |
17 | | Richard Maclin,
Jude W. Shavlik:
Refining Domain Theories Expressed as Finite-State Automata.
ML 1991: 524-528 |
16 | EE | Gary M. Scott,
Jude W. Shavlik,
W. Harmon Ray:
Refined PID Controllers Using Neural Networks.
NIPS 1991: 555-562 |
15 | EE | Geoffrey G. Towell,
Jude W. Shavlik:
Interpretation of Artificial Neural Networks: Mapping Knowledge-Based Neural Networks into Rules.
NIPS 1991: 977-984 |
14 | | Jude W. Shavlik,
Raymond J. Mooney,
Geoffrey G. Towell:
Symbolic and Neural Learning Algorithms: An Experimental Comparison.
Machine Learning 6: 111-143 (1991) |
1990 |
13 | | Geoffrey G. Towell,
Jude W. Shavlik,
Michiel O. Noordewier:
Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks.
AAAI 1990: 861-866 |
12 | EE | Michiel O. Noordewier,
Geoffrey G. Towell,
Jude W. Shavlik:
Training Knowledge-Based Neural Networks to Recognize Genes.
NIPS 1990: 530-536 |
11 | | Jude W. Shavlik,
Gerald DeJong:
Learning in Mathematically-Based Domains: Understanding and Generalizing Obstacle Cancellations.
Artif. Intell. 45(1-2): 1-45 (1990) |
10 | | Jude W. Shavlik:
Acquiring Recursive and Iterative Concepts with Explanation-Based Learning.
Machine Learning 5: 39-40 (1990) |
1989 |
9 | | Jude W. Shavlik:
Acquiring Recursive Concepts with Explanation-Based Learning.
IJCAI 1989: 688-693 |
8 | | Raymond J. Mooney,
Jude W. Shavlik,
Geoffrey G. Towell,
Alan Gove:
An Experimental Comparison of Symbolic and Connectionist Learning Algorithms.
IJCAI 1989: 775-780 |
7 | | Douglas H. Fisher,
Kathleen B. McKusick,
Raymond J. Mooney,
Jude W. Shavlik,
Geoffrey G. Towell:
Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems.
ML 1989: 169-173 |
6 | | Jude W. Shavlik:
An Empirical Analysis of EBL Approaches for Learning Plan Schemata.
ML 1989: 183-187 |
5 | | Richard Maclin,
Jude W. Shavlik:
Enriching Vocabularies by Generalizing Explanation Structures.
ML 1989: 444-446 |
4 | | Jude W. Shavlik,
Geoffrey G. Towell:
Combining Explanation-Based Learning and Artificial Neural Networks.
ML 1989: 90-93 |
1987 |
3 | | Jude W. Shavlik,
Gerald DeJong:
BAGGER: An EBL System that Extends and Generalizes Explanations.
AAAI 1987: 516-520 |
2 | | Jude W. Shavlik,
Gerald DeJong:
An Explanation-based Approach to Generalizing Number.
IJCAI 1987: 236-238 |
1985 |
1 | | Jude W. Shavlik:
Learning about Momentum Conservation.
IJCAI 1985: 667-669 |