2009 | ||
---|---|---|
97 | EE | Bee-Chung Chen, Raghu Ramakrishnan, Jude W. Shavlik, Pradeep Tamma: Bellwether analysis: Searching for cost-effective query-defined predictors in large databases. TKDD 3(1): (2009) |
2008 | ||
96 | Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, Prasad Tadepalli: Inductive Logic Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007, Revised Selected Papers Springer 2008 | |
95 | EE | Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin: Rule Extraction for Transfer Learning. Rule Extraction from Support Vector Machines 2008: 67-82 |
94 | EE | Hendrik Blockeel, Jude W. Shavlik, Prasad Tadepalli: Guest editors' introduction: special issue on inductive logic programming (ILP-2007). Machine Learning 73(1): 1-2 (2008) |
2007 | ||
93 | Richard Maclin, Edward W. Wild, Jude W. Shavlik, Lisa Torrey, Trevor Walker: Refining Rules Incorporated into Knowledge-Based Support Vector Learners Via Successive Linear Programming. AAAI 2007: 584-589 | |
92 | EE | Frank DiMaio, Ameet Soni, George N. Phillips, Jude W. Shavlik: Improved Methods for Template-Matching in Electron-Density Maps Using Spherical Harmonics. BIBM 2007: 258-265 |
91 | EE | Mark Goadrich, Jude W. Shavlik: Combining Clauses with Various Precisions and Recalls to Produce Accurate Probabilistic Estimates. ILP 2007: 122-131 |
90 | EE | Louis Oliphant, Jude W. Shavlik: Using Bayesian Networks to Direct Stochastic Search in Inductive Logic Programming. ILP 2007: 191-199 |
89 | EE | Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin: Relational Macros for Transfer in Reinforcement Learning. ILP 2007: 254-268 |
88 | EE | Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richard Maclin: Building Relational World Models for Reinforcement Learning. ILP 2007: 280-291 |
87 | EE | Frank DiMaio, Dmitry A. Kondrashov, Eduard Bitto, Ameet Soni, Craig A. Bingman, George N. Phillips Jr., Jude W. Shavlik: Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23(21): 2851-2858 (2007) |
2006 | ||
86 | Richard Maclin, Jude W. Shavlik, Trevor Walker, Lisa Torrey: A Simple and Effective Method for Incorporating Advice into Kernel Methods. AAAI 2006 | |
85 | EE | Lisa Torrey, Jude W. Shavlik, Trevor Walker, Richard Maclin: Skill Acquisition Via Transfer Learning and Advice Taking. ECML 2006: 425-436 |
84 | EE | Frank DiMaio, Jude W. Shavlik: Belief Propagation in Large, Highly Connected Graphs for 3D Part-Based Object Recognition. ICDM 2006: 845-850 |
83 | EE | Frank DiMaio, Jude W. Shavlik, George N. Phillips: A probabilistic approach to protein backbone tracing in electron density maps. ISMB (Supplement of Bioinformatics) 2006: 81-89 |
82 | EE | Bee-Chung Chen, Raghu Ramakrishnan, Jude W. Shavlik, Pradeep Tamma: Bellwether Analysis: Predicting Global Aggregates from Local Regions. VLDB 2006: 655-666 |
81 | EE | Mark Goadrich, Louis Oliphant, Jude W. Shavlik: Gleaner: Creating ensembles of first-order clauses to improve recall-precision curves. Machine Learning 64(1-3): 231-261 (2006) |
2005 | ||
80 | Richard Maclin, Jude W. Shavlik, Lisa Torrey, Trevor Walker, Edward W. Wild: Giving Advice about Preferred Actions to Reinforcement Learners Via Knowledge-Based Kernel Regression. AAAI 2005: 819-824 | |
79 | EE | Lisa Torrey, Trevor Walker, Jude W. Shavlik, Richard Maclin: Using Advice to Transfer Knowledge Acquired in One Reinforcement Learning Task to Another. ECML 2005: 412-424 |
78 | EE | Jesse Davis, Elizabeth S. Burnside, Inês de Castro Dutra, David Page, Raghu Ramakrishnan, Vítor Santos Costa, Jude W. Shavlik: View Learning for Statistical Relational Learning: With an Application to Mammography. IJCAI 2005: 677-683 |
77 | EE | Héctor Corrada Bravo, David Page, Raghu Ramakrishnan, Jude W. Shavlik, Vítor Santos Costa: A Framework for Set-Oriented Computation in Inductive Logic Programming and Its Application in Generalizing Inverse Entailment. ILP 2005: 69-86 |
76 | EE | Lisa Torrey, Trevor Walker, Jude W. Shavlik, Richard Maclin: Knowledge transfer via advice taking. K-CAP 2005: 217-218 |
2004 | ||
75 | EE | Michael Molla, Jude W. Shavlik, Thomas Albert, Todd Richmond, Steven Smith: A Self-Tuning Method for One-Chip SNP Identification. CSB 2004: 69-79 |
74 | EE | Jude W. Shavlik: Scaling Up ILP: Experiences with Extracting Relations from Biomedical Text. ILP 2004: 7 |
73 | EE | Frank DiMaio, Jude W. Shavlik: Learning an Approximation to Inductive Logic Programming Clause Evaluation. ILP 2004: 80-97 |
72 | EE | Mark Goadrich, Louis Oliphant, Jude W. Shavlik: Learning Ensembles of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical Information Extraction. ILP 2004: 98-115 |
71 | EE | Jude W. Shavlik, Mark Shavlik: Selection, combination, and evaluation of effective software sensors for detecting abnormal computer usage. KDD 2004: 276-285 |
70 | EE | Frank DiMaio, Jude W. Shavlik, George N. Phillips: Pictorial Structures for Molecular Modeling: Interpreting Density Maps. NIPS 2004 |
69 | Michael Molla, Michael Waddell, David Page, Jude W. Shavlik: Using Machine Learning to Design and Interpret Gene-Expression Microarrays. AI Magazine 25(1): 23-44 (2004) | |
68 | EE | Olvi L. Mangasarian, Jude W. Shavlik, Edward W. Wild: Knowledge-Based Kernel Approximation. Journal of Machine Learning Research 5: 1127-1141 (2004) |
2003 | ||
67 | EE | Glenn Fung, Olvi L. Mangasarian, Jude W. Shavlik: Knowledge-Based Nonlinear Kernel Classifiers. COLT 2003: 102-113 |
66 | EE | Inês de Castro Dutra, David Page, Vítor Santos Costa, Jude W. Shavlik, Michael Waddell: Toward Automatic Management of Embarrassingly Parallel Applications. Euro-Par 2003: 509-516 |
65 | EE | Fernanda Araujo Baião, Marta Mattoso, Jude W. Shavlik, Gerson Zaverucha: Applying Theory Revision to the Design of Distributed Databases. ILP 2003: 57-74 |
64 | Joseph Bockhorst, Mark Craven, David Page, Jude W. Shavlik, Jeremy D. Glasner: A Bayesian Network Approach to Operon Prediction. Bioinformatics 19(10): 1227-1235 (2003) | |
63 | EE | Tina Eliassi-Rad, Jude W. Shavlik: A System for Building Intelligent Agents that Learn to Retrieve and Extract Information. User Model. User-Adapt. Interact. 13(1-2): 35-88 (2003) |
2002 | ||
62 | EE | Inês de Castro Dutra, David Page, Vítor Santos Costa, Jude W. Shavlik: An Empirical Evaluation of Bagging in Inductive Logic Programming. ILP 2002: 48-65 |
61 | J. B. Tobler, Michael Molla, Emile F. Nuwaysir, R. D. Green, Jude W. Shavlik: Evaluating machine learning approaches for aiding probe selection for gene-expression arrays. ISMB 2002: 164-171 | |
60 | Michael Molla, Peter Andreae, Jeremy D. Glasner, Frederick R. Blattner, Jude W. Shavlik: Interpreting Microarray Expression Data Using Text Annotating the Genes. JCIS 2002: 1224-1230 | |
59 | EE | Glenn Fung, Olvi L. Mangasarian, Jude W. Shavlik: Knowledge-Based Support Vector Machine Classifiers. NIPS 2002: 521-528 |
58 | Yolanda Gil, Mark A. Musen, Jude W. Shavlik: Report on the First International Conference on Knowledge Capture (K-CAP). AI Magazine 23(4): 107-108 (2002) | |
57 | EE | Michael Molla, Peter Andreae, Jeremy D. Glasner, Frederick R. Blattner, Jude W. Shavlik: Interpreting microarray expression data using text annotating the genes. Inf. Sci. 146(1-4): 75-88 (2002) |
2001 | ||
56 | Tina Eliassi-Rad, Jude W. Shavlik: A Theory-Refinement Approach to Information Extraction. ICML 2001: 130-137 | |
2000 | ||
55 | Mark Craven, David Page, Jude W. Shavlik, Joseph Bockhorst, Jeremy D. Glasner: Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes. ICML 2000: 199-206 | |
54 | Mark Craven, David Page, Jude W. Shavlik, Joseph Bockhorst, Jeremy D. Glasner: A Probabilistic Learning Approach to Whole-Genome Operon Prediction. ISMB 2000: 116-127 | |
53 | EE | Jeremy Goecks, Jude W. Shavlik: Learning users' interests by unobtrusively observing their normal behavior. IUI 2000: 129-132 |
1999 | ||
52 | EE | Jude W. Shavlik, Susan Calcari, Tina Eliassi-Rad, Jack Solock: An Instructable, Adaptive Interface for Discovering and Monitoring Information on the World-Wide Web. IUI 1999: 157-160 |
51 | EE | Jude W. Shavlik, Lawrence Birnbaum, William R. Swartout, Eric Horvitz, Barbara Hayes-Roth: Bridging Science and Applications (Panel). IUI 1999: 45-46 |
50 | Carolyn F. Allex, Jude W. Shavlik, Frederick R. Blattner: Neural network input representations that produce accurate consensus sequences from DNA fragment assemblies. Bioinformatics 15(9): 723-728 (1999) | |
1998 | ||
49 | Jude W. Shavlik: Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison, Wisconson, USA, July 24-27, 1998 Morgan Kaufmann 1998 | |
1997 | ||
48 | Carolyn F. Allex, Schuyler F. Baldwin, Jude W. Shavlik, Frederick R. Blattner: Increasing Consensus Accuracy in DNA Fragment Assemblies by Incorporating Fluorescent Trace Representations. ISMB 1997: 3-14 | |
47 | EE | David W. Opitz, Jude W. Shavlik: Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies CoRR cs.AI/9705102: (1997) |
46 | EE | Mark Craven, Jude W. Shavlik: Understanding Time-Series Networks: A Case Study in Rule Extraction. Int. J. Neural Syst. 8(4): 373-384 (1997) |
45 | David W. Opitz, Jude W. Shavlik: Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies. J. Artif. Intell. Res. (JAIR) 6: 177-209 (1997) | |
1996 | ||
44 | Carolyn F. Allex, Schuyler F. Baldwin, Jude W. Shavlik, Frederick R. Blattner: Improving the Quality of Automatic DNA Sequence Assembly Using Fluorescent Trace-Data Classifications. ISMB 1996: 3-14 | |
43 | Kevin J. Cherkauer, Jude W. Shavlik: Growing Simpler Decision Trees to Facilitate Knowledge Discovery. KDD 1996: 315-318 | |
42 | EE | David W. Opitz, Jude W. Shavlik: Actively Searching for an Effective Neural Network Ensemble. Connect. Sci. 8(3): 337-354 (1996) |
41 | Richard Maclin, Jude W. Shavlik: Creating Advice-Taking Reinforcement Learners. Machine Learning 22(1-3): 251-281 (1996) | |
1995 | ||
40 | Richard Maclin, Jude W. Shavlik: Combining the Predictions of Multiple Classifiers: Using Competitive Learning to Initialize Neural Networks. IJCAI 1995: 524-531 | |
39 | EE | Mark Craven, Jude W. Shavlik: Extracting Tree-Structured Representations of Trained Networks. NIPS 1995: 24-30 |
38 | EE | Kevin J. Cherkauer, Jude W. Shavlik: Rapid Quality Estimation of Neural Network Input Representations. NIPS 1995: 45-51 |
37 | EE | David W. Opitz, Jude W. Shavlik: Generating Accurate and Diverse Members of a Neural-Network Ensemble. NIPS 1995: 535-541 |
36 | EE | David W. Opitz, Jude W. Shavlik: Dynamically adding symbolically meaningful nodes to knowledge-based neural networks. Knowl.-Based Syst. 8(6): 301-311 (1995) |
35 | Jude W. Shavlik, Lawrence Hunter, David B. Searls: Introduction. Machine Learning 21(1-2): 5-9 (1995) | |
1994 | ||
34 | Richard Maclin, Jude W. Shavlik: Incorporating Advice into Agents that Learn from Reinforcements. AAAI 1994: 694-699 | |
33 | David W. Opitz, Jude W. Shavlik: Using Genetic Search to Refine Knowledge-based Neural Networks. ICML 1994: 208-216 | |
32 | Mark Craven, Jude W. Shavlik: Using Sampling and Queries to Extract Rules from Trained Neural Networks. ICML 1994: 37-45 | |
31 | David B. Searls, Jude W. Shavlik, Lawrence Hunter: The First International Conference on Intelligent Systems for Molecular Biology. AI Magazine 15(1): 12-13 (1994) | |
30 | Geoffrey G. Towell, Jude W. Shavlik: Knowledge-Based Artificial Neural Networks. Artif. Intell. 70(1-2): 119-165 (1994) | |
29 | EE | Mark Craven, Jude W. Shavlik: Machine Learning Approaches to Gene Recognition. IEEE Expert 9(2): 2-10 (1994) |
28 | Jude W. Shavlik: Combining Symbolic and Neural Learning. Machine Learning 14(1): 321-331 (1994) | |
1993 | ||
27 | Lawrence Hunter, David B. Searls, Jude W. Shavlik: Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology, Bethesda, MD, USA, July 1993 AAAI 1993 | |
26 | Mark Craven, Jude W. Shavlik: Learning Symbolic Rules Using Artificial Neural Networks. ICML 1993: 73-80 | |
25 | Mark Craven, Jude W. Shavlik: Learning to Represent Codons: A Challenge Problem for Constructive Induction. IJCAI 1993: 1319-1324 | |
24 | David W. Opitz, Jude W. Shavlik: Heuristically Expanding Knowledge-Based Neural Networks. IJCAI 1993: 1360-1365 | |
23 | Kevin J. Cherkauer, Jude W. Shavlik: Protein Structure Prediction: Selecting Salient Features from Large Candidate Pools. ISMB 1993: 74-82 | |
22 | Richard Maclin, Jude W. Shavlik: Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding. Machine Learning 11: 195-215 (1993) | |
21 | Geoffrey G. Towell, Jude W. Shavlik: Extracting Refined Rules from Knowledge-Based Neural Networks. Machine Learning 13: 71-101 (1993) | |
1992 | ||
20 | Richard Maclin, Jude W. Shavlik: Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding. AAAI 1992: 165-170 | |
19 | Geoffrey G. Towell, Jude W. Shavlik: Using Symbolic Learning to Improve Knowledge-Based Neural Networks. AAAI 1992: 177-182 | |
1991 | ||
18 | Geoffrey G. Towell, Mark Craven, Jude W. Shavlik: Constructive Induction in Knowledge-Based Neural Networks. ML 1991: 213-217 | |
17 | Richard Maclin, Jude W. Shavlik: Refining Domain Theories Expressed as Finite-State Automata. ML 1991: 524-528 | |
16 | EE | Gary M. Scott, Jude W. Shavlik, W. Harmon Ray: Refined PID Controllers Using Neural Networks. NIPS 1991: 555-562 |
15 | EE | Geoffrey G. Towell, Jude W. Shavlik: Interpretation of Artificial Neural Networks: Mapping Knowledge-Based Neural Networks into Rules. NIPS 1991: 977-984 |
14 | Jude W. Shavlik, Raymond J. Mooney, Geoffrey G. Towell: Symbolic and Neural Learning Algorithms: An Experimental Comparison. Machine Learning 6: 111-143 (1991) | |
1990 | ||
13 | Geoffrey G. Towell, Jude W. Shavlik, Michiel O. Noordewier: Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks. AAAI 1990: 861-866 | |
12 | EE | Michiel O. Noordewier, Geoffrey G. Towell, Jude W. Shavlik: Training Knowledge-Based Neural Networks to Recognize Genes. NIPS 1990: 530-536 |
11 | Jude W. Shavlik, Gerald DeJong: Learning in Mathematically-Based Domains: Understanding and Generalizing Obstacle Cancellations. Artif. Intell. 45(1-2): 1-45 (1990) | |
10 | Jude W. Shavlik: Acquiring Recursive and Iterative Concepts with Explanation-Based Learning. Machine Learning 5: 39-40 (1990) | |
1989 | ||
9 | Jude W. Shavlik: Acquiring Recursive Concepts with Explanation-Based Learning. IJCAI 1989: 688-693 | |
8 | Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell, Alan Gove: An Experimental Comparison of Symbolic and Connectionist Learning Algorithms. IJCAI 1989: 775-780 | |
7 | Douglas H. Fisher, Kathleen B. McKusick, Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell: Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems. ML 1989: 169-173 | |
6 | Jude W. Shavlik: An Empirical Analysis of EBL Approaches for Learning Plan Schemata. ML 1989: 183-187 | |
5 | Richard Maclin, Jude W. Shavlik: Enriching Vocabularies by Generalizing Explanation Structures. ML 1989: 444-446 | |
4 | Jude W. Shavlik, Geoffrey G. Towell: Combining Explanation-Based Learning and Artificial Neural Networks. ML 1989: 90-93 | |
1987 | ||
3 | Jude W. Shavlik, Gerald DeJong: BAGGER: An EBL System that Extends and Generalizes Explanations. AAAI 1987: 516-520 | |
2 | Jude W. Shavlik, Gerald DeJong: An Explanation-based Approach to Generalizing Number. IJCAI 1987: 236-238 | |
1985 | ||
1 | Jude W. Shavlik: Learning about Momentum Conservation. IJCAI 1985: 667-669 |