Alex J. Smola
List of publications from the DBLP Bibliography Server - FAQ
2009 | ||
---|---|---|
113 | EE | Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, Alex J. Smola: Feature Hashing for Large Scale Multitask Learning CoRR abs/0902.2206: (2009) |
2008 | ||
112 | EE | Qinfeng Shi, Li Wang, Li Cheng, Alexander J. Smola: Discriminative human action segmentation and recognition using semi-Markov model. CVPR 2008 |
111 | EE | Markus Weimer, Alexandros Karatzoglou, Alex J. Smola: Improving Maximum Margin Matrix Factorization. ECML/PKDD (1) 2008: 14 |
110 | EE | Ahmed El Zein, Eric McCreath, Alistair P. Rendell, Alex J. Smola: Performance Evaluation of the NVIDIA GeForce 8800 GTX GPU for Machine Learning. ICCS (1) 2008: 466-475 |
109 | EE | Novi Quadrianto, Alex J. Smola, Tibério S. Caetano, Quoc V. Le: Estimating labels from label proportions. ICML 2008: 776-783 |
108 | EE | Le Song, Xinhua Zhang, Alex J. Smola, Arthur Gretton, Bernhard Schölkopf: Tailoring density estimation via reproducing kernel moment matching. ICML 2008: 992-999 |
107 | EE | Julian John McAuley, Tibério S. Caetano, Alexander J. Smola: Robust Near-Isometric Matching via Structured Learning of Graphical Models. NIPS 2008: 1057-1064 |
106 | EE | Novi Quadrianto, Le Song, Alex J. Smola: Kernelized Sorting. NIPS 2008: 1289-1296 |
105 | EE | Xinhua Zhang, Le Song, Arthur Gretton, Alex J. Smola: Kernel Measures of Independence for non-iid Data. NIPS 2008: 1937-1944 |
104 | EE | Olivier Chapelle, Chuong B. Do, Quoc V. Le, Alexander J. Smola, Choon Hui Teo: Tighter Bounds for Structured Estimation. NIPS 2008: 281-288 |
103 | EE | Markus Weimer, Alexandros Karatzoglou, Alex J. Smola: Adaptive collaborative filtering. RecSys 2008: 275-282 |
102 | EE | Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola: A Kernel Method for the Two-Sample Problem CoRR abs/0805.2368: (2008) |
101 | EE | Tibério S. Caetano, Julian John McAuley, Li Cheng, Quoc V. Le, Alex J. Smola: Learning Graph Matching CoRR abs/0806.2890: (2008) |
100 | EE | Julian John McAuley, Tibério S. Caetano, Alexander J. Smola: Robust Near-Isometric Matching via Structured Learning of Graphical Models CoRR abs/0809.3618: (2008) |
99 | EE | Markus Weimer, Alexandros Karatzoglou, Alex J. Smola: Improving maximum margin matrix factorization. Machine Learning 72(3): 263-276 (2008) |
2007 | ||
98 | Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola: A Kernel Approach to Comparing Distributions. AAAI 2007: 1637-1641 | |
97 | EE | Alex J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf: A Hilbert Space Embedding for Distributions. ALT 2007: 13-31 |
96 | EE | Alexander J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf: A Hilbert Space Embedding for Distributions. Discovery Science 2007: 40-41 |
95 | EE | Tibério S. Caetano, Li Cheng, Quoc V. Le, Alex J. Smola: Learning Graph Matching. ICCV 2007: 1-8 |
94 | EE | Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt: A dependence maximization view of clustering. ICML 2007: 815-822 |
93 | EE | Le Song, Alex J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo: Supervised feature selection via dependence estimation. ICML 2007: 823-830 |
92 | EE | Le Song, Justin Bedo, Karsten M. Borgwardt, Arthur Gretton, Alexander J. Smola: Gene selection via the BAHSIC family of algorithms. ISMB/ECCB (Supplement of Bioinformatics) 2007: 490-498 |
91 | EE | Choon Hui Teo, Alex J. Smola, S. V. N. Vishwanathan, Quoc V. Le: A scalable modular convex solver for regularized risk minimization. KDD 2007: 727-736 |
90 | EE | Alex J. Smola: Learning Graph Matching. MLG 2007 |
89 | EE | Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, Alex J. Smola: A Kernel Statistical Test of Independence. NIPS 2007 |
88 | EE | Alex J. Smola, S. V. N. Vishwanathan, Quoc V. Le: Bundle Methods for Machine Learning. NIPS 2007 |
87 | EE | Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, Alex J. Smola: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking . NIPS 2007 |
86 | EE | Le Song, Alex J. Smola, Karsten M. Borgwardt, Arthur Gretton: Colored Maximum Variance Unfolding. NIPS 2007 |
85 | EE | Choon Hui Teo, Amir Globerson, Sam T. Roweis, Alex J. Smola: Convex Learning with Invariances. NIPS 2007 |
84 | EE | Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo: Supervised Feature Selection via Dependence Estimation CoRR abs/0704.2668: (2007) |
83 | EE | Quoc V. Le, Alexander J. Smola: Direct Optimization of Ranking Measures CoRR abs/0704.3359: (2007) |
82 | EE | S. V. N. Vishwanathan, Alexander J. Smola, René Vidal: Binet-Cauchy Kernels on Dynamical Systems and its Application to the Analysis of Dynamic Scenes. International Journal of Computer Vision 73(1): 95-119 (2007) |
2006 | ||
81 | EE | Yasemin Altun, Alexander J. Smola: Unifying Divergence Minimization and Statistical Inference Via Convex Duality. COLT 2006: 139-153 |
80 | EE | Quoc V. Le, Alexander J. Smola, Thomas Gärtner, Yasemin Altun: Transductive Gaussian Process Regression with Automatic Model Selection. ECML 2006: 306-317 |
79 | EE | Quoc V. Le, Alex J. Smola, Thomas Gärtner: Simpler knowledge-based support vector machines. ICML 2006: 521-528 |
78 | EE | Julian John McAuley, Tibério S. Caetano, Alex J. Smola, Matthias O. Franz: Learning high-order MRF priors of color images. ICML 2006: 617-624 |
77 | EE | Hao Shen, Knut Hüper, Alexander J. Smola: Newton-Like Methods for Nonparametric Independent Component Analysis. ICONIP (1) 2006: 1068-1077 |
76 | EE | Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, Alexander J. Smola: Integrating structured biological data by Kernel Maximum Mean Discrepancy. ISMB (Supplement of Bioinformatics) 2006: 49-57 |
75 | EE | Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola: A Kernel Method for the Two-Sample-Problem. NIPS 2006: 513-520 |
74 | EE | Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf: Correcting Sample Selection Bias by Unlabeled Data. NIPS 2006: 601-608 |
73 | EE | S. V. N. Vishwanathan, Nicol N. Schraudolph, Alex J. Smola: Step Size Adaptation in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research 7: 1107-1133 (2006) |
72 | EE | Ichiro Takeuchi, Quoc V. Le, Tim D. Sears, Alexander J. Smola: Nonparametric Quantile Estimation. Journal of Machine Learning Research 7: 1231-1264 (2006) |
71 | EE | Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, Alexander J. Smola: Second Order Cone Programming Approaches for Handling Missing and Uncertain Data. Journal of Machine Learning Research 7: 1283-1314 (2006) |
70 | EE | Stéphane Canu, Alexander J. Smola: Kernel methods and the exponential family. Neurocomputing 69(7-9): 714-720 (2006) |
69 | EE | S. V. N. Vishwanathan, Karsten M. Borgwardt, Omri Guttman, Alexander J. Smola: Kernel extrapolation. Neurocomputing 69(7-9): 721-729 (2006) |
2005 | ||
68 | EE | Arthur Gretton, Olivier Bousquet, Alex J. Smola, Bernhard Schölkopf: Measuring Statistical Dependence with Hilbert-Schmidt Norms. ALT 2005: 63-77 |
67 | EE | Stéphane Canu, Alexander J. Smola: Kernel methods and the exponential family. ESANN 2005: 447-454 |
66 | EE | Karsten M. Borgwardt, Omri Guttman, S. V. N. Vishwanathan, Alexander J. Smola: Joint Regularization. ESANN 2005: 455-460 |
65 | EE | Quoc V. Le, Alexander J. Smola, Stéphane Canu: Heteroscedastic Gaussian process regression. ICML 2005: 489-496 |
64 | EE | Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J. Smola, Hans-Peter Kriegel: Protein function prediction via graph kernels. ISMB (Supplement of Bioinformatics) 2005: 47-56 |
63 | EE | Vladimir Nikulin, Alex J. Smola: Universal Clustering with Regularization in Probabilistic Space. MLDM 2005: 142-152 |
62 | EE | Thomas Gärtner, Quoc V. Le, Simon Burton, Alex J. Smola, S. V. N. Vishwanathan: Large-Scale Multiclass Transduction. NIPS 2005 |
61 | EE | Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson: Learning the Kernel with Hyperkernels. Journal of Machine Learning Research 6: 1043-1071 (2005) |
60 | EE | Arthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, Bernhard Schölkopf: Kernel Methods for Measuring Independence. Journal of Machine Learning Research 6: 2075-2129 (2005) |
59 | EE | Athanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola: Experimentally optimal nu in support vector regression for different noise models and parameter settings. Neural Networks 18(2): 205- (2005) |
58 | EE | Gaëlle Loosli, Stéphane Canu, S. V. N. Vishwanathan, Alexander J. Smola, M. Chattopadhyay: Boîte à outils SVM simple et rapide. Revue d'Intelligence Artificielle 19(4-5): 741-767 (2005) |
2004 | ||
57 | EE | Yasemin Altun, Thomas Hofmann, Alex J. Smola: Gaussian process classification for segmenting and annotating sequences. ICML 2004 |
56 | EE | Cheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola: Learning with non-positive kernels. ICML 2004 |
55 | EE | Chiranjib Bhattacharyya, Pannagadatta K. Shivaswamy, Alex J. Smola: A Second Order Cone programming Formulation for Classifying Missing Data. NIPS 2004 |
54 | EE | S. V. N. Vishwanathan, Alex J. Smola: Binet-Cauchy Kernels. NIPS 2004 |
53 | EE | Yasemin Altun, Alexander J. Smola, Thomas Hofmann: Exponential Families for Conditional Random Fields. UAI 2004: 2-9 |
52 | EE | Athanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola: Experimentally optimal v in support vector regression for different noise models and parameter settings. Neural Networks 17(1): 127-141 (2004) |
51 | EE | Alexander J. Smola, Bernhard Schölkopf: A tutorial on support vector regression. Statistics and Computing 14(3): 199-222 (2004) |
2003 | ||
50 | Shahar Mendelson, Alex J. Smola: Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Canberra, Australia, February 11-22, 2002, Revised Lectures Springer 2003 | |
49 | EE | Alex J. Smola, Risi Imre Kondor: Kernels and Regularization on Graphs. COLT 2003: 144-158 |
48 | Cheng Soon Ong, Alex J. Smola: Machine Learning with Hyperkernels. ICML 2003: 568-575 | |
47 | S. V. N. Vishwanathan, Alex J. Smola, M. Narasimha Murty: SimpleSVM. ICML 2003: 760-767 | |
46 | EE | Alexander J. Smola, Vishy Vishwanathan, Eleazar Eskin: Laplace Propagation. NIPS 2003 |
45 | EE | Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(5): 623-633 (2003) |
2002 | ||
44 | EE | Jyrki Kivinen, Alex J. Smola, Robert C. Williamson: Large Margin Classification for Moving Targets. ALT 2002: 113-127 |
43 | Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, Alex J. Smola: Multi-Instance Kernels. ICML 2002: 179-186 | |
42 | EE | Bernhard Schölkopf, Alex J. Smola: A Short Introduction to Learning with Kernels. Machine Learning Summer School 2002: 41-64 |
41 | EE | Alex J. Smola, Bernhard Schölkopf: Bayesian Kernel Methods. Machine Learning Summer School 2002: 65-117 |
40 | EE | Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson: Hyperkernels. NIPS 2002: 478-485 |
39 | EE | Gunnar Rätsch, Alexander J. Smola, Sebastian Mika: Adapting Codes and Embeddings for Polychotomies. NIPS 2002: 513-520 |
38 | EE | S. V. N. Vishwanathan, Alexander J. Smola: Fast Kernels for String and Tree Matching. NIPS 2002: 569-576 |
37 | EE | Glenn Fung, Olvi L. Mangasarian, Alex J. Smola: Minimal Kernel Classifiers. Journal of Machine Learning Research 3: 303-321 (2002) |
2001 | ||
36 | EE | Bernhard Schölkopf, Ralf Herbrich, Alex J. Smola: A Generalized Representer Theorem. COLT/EuroCOLT 2001: 416-426 |
35 | EE | Adam Kowalczyk, Alex J. Smola, Robert C. Williamson: Kernel Machines and Boolean Functions. NIPS 2001: 439-446 |
34 | EE | Jyrki Kivinen, Alex J. Smola, Robert C. Williamson: Online Learning with Kernels. NIPS 2001: 785-792 |
33 | Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf: Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory 47(6): 2516-2532 (2001) | |
32 | EE | Alex J. Smola, Sebastian Mika, Bernhard Schölkopf, Robert C. Williamson: Regularized Principal Manifolds. Journal of Machine Learning Research 1: 179-209 (2001) |
31 | Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, Robert C. Williamson: Estimating the Support of a High-Dimensional Distribution. Neural Computation 13(7): 1443-1471 (2001) | |
2000 | ||
30 | Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf: Entropy Numbers of Linear Function Classes. COLT 2000: 309-319 | |
29 | Colin Campbell, Nello Cristianini, Alex J. Smola: Query Learning with Large Margin Classifiers. ICML 2000: 111-118 | |
28 | Alex J. Smola, Bernhard Schölkopf: Sparse Greedy Matrix Approximation for Machine Learning. ICML 2000: 911-918 | |
27 | EE | Athanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola: Choosing in Support Vector Regression with Different Noise Models: Theory and Experiments. IJCNN (5) 2000: 199-204 |
26 | Alex J. Smola, Zoltán L. Óvári, Robert C. Williamson: Regularization with Dot-Product Kernels. NIPS 2000: 308-314 | |
25 | Alex J. Smola, Peter L. Bartlett: Sparse Greedy Gaussian Process Regression. NIPS 2000: 619-625 | |
24 | Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller: Robust Ensemble Learning for Data Mining. PAKDD 2000: 341-344 | |
23 | Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, Peter L. Bartlett: New Support Vector Algorithms. Neural Computation 12(5): 1207-1245 (2000) | |
1999 | ||
22 | EE | Alex J. Smola, Robert C. Williamson, Sebastian Mika, Bernhard Schölkopf: Regularized Principal Manifolds. EuroCOLT 1999: 214-229 |
21 | EE | Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf: Entropy Numbers, Operators and Support Vector Kernels. EuroCOLT 1999: 285-299 |
20 | Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Christian Lemmen, Alex J. Smola, Thomas Lengauer, Klaus-Robert Müller: Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites. German Conference on Bioinformatics 1999: 37-43 | |
19 | EE | Alex J. Smola, John Shawe-Taylor, Bernhard Schölkopf, Robert C. Williamson: The Entropy Regularization Information Criterion. NIPS 1999: 342-348 |
18 | EE | Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Invariant Feature Extraction and Classification in Kernel Spaces. NIPS 1999: 526-532 |
17 | EE | Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika: v-Arc: Ensemble Learning in the Presence of Outliers. NIPS 1999: 561-567 |
16 | EE | Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, John C. Platt: Support Vector Method for Novelty Detection. NIPS 1999: 582-588 |
15 | EE | Bernhard Schölkopf, Sebastian Mika, Christopher J. C. Burges, Phil Knirsch, Klaus-Robert Müller, Gunnar Rätsch, Alexander J. Smola: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5): 1000-1017 (1999) |
14 | EE | Bernhard Schölkopf, Klaus-Robert Müller, Alex J. Smola: Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten. Inform., Forsch. Entwickl. 14(3): 154-163 (1999) |
1998 | ||
13 | Bernhard Schölkopf, Alex J. Smola, Phil Knirsch, Chris Burges: Fast Approximation of Support Vector Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature Spaces. DAGM-Symposium 1998: 125-132 | |
12 | EE | Bernhard Schölkopf, Peter L. Bartlett, Alex J. Smola, Robert C. Williamson: Shrinking the Tube: A New Support Vector Regression Algorithm. NIPS 1998: 330-336 |
11 | EE | Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch: Kernel PCA and De-Noising in Feature Spaces. NIPS 1998: 536-542 |
10 | EE | Alex J. Smola, Thilo-Thomas Frieß, Bernhard Schölkopf: Semiparametric Support Vector and Linear Programming Machines. NIPS 1998: 585-591 |
9 | Alex J. Smola, Bernhard Schölkopf: On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion. Algorithmica 22(1/2): 211-231 (1998) | |
8 | Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10(5): 1299-1319 (1998) | |
7 | EE | Alex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller: The connection between regularization operators and support vector kernels. Neural Networks 11(4): 637-649 (1998) |
1997 | ||
6 | Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Kernel Principal Component Analysis. ICANN 1997: 583-588 | |
5 | Klaus-Robert Müller, Alex J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, Vladimir Vapnik: Predicting Time Series with Support Vector Machines. ICANN 1997: 999-1004 | |
4 | Alex J. Smola, Bernhard Schölkopf: From Regularization Operators to Support Vector Kernels. NIPS 1997 | |
3 | Bernhard Schölkopf, Patrice Simard, Alex J. Smola, Vladimir Vapnik: Prior Knowledge in Support Vector Kernels. NIPS 1997 | |
1996 | ||
2 | EE | Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, Vladimir Vapnik: Support Vector Regression Machines. NIPS 1996: 155-161 |
1 | EE | Vladimir Vapnik, Steven E. Golowich, Alex J. Smola: Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. NIPS 1996: 281-287 |