dblp.uni-trier.dewww.uni-trier.de

Alexander J. Smola

Alex J. Smola

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2009
113EEKilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, Alex J. Smola: Feature Hashing for Large Scale Multitask Learning CoRR abs/0902.2206: (2009)
2008
112EEQinfeng Shi, Li Wang, Li Cheng, Alexander J. Smola: Discriminative human action segmentation and recognition using semi-Markov model. CVPR 2008
111EEMarkus Weimer, Alexandros Karatzoglou, Alex J. Smola: Improving Maximum Margin Matrix Factorization. ECML/PKDD (1) 2008: 14
110EEAhmed El Zein, Eric McCreath, Alistair P. Rendell, Alex J. Smola: Performance Evaluation of the NVIDIA GeForce 8800 GTX GPU for Machine Learning. ICCS (1) 2008: 466-475
109EENovi Quadrianto, Alex J. Smola, Tibério S. Caetano, Quoc V. Le: Estimating labels from label proportions. ICML 2008: 776-783
108EELe Song, Xinhua Zhang, Alex J. Smola, Arthur Gretton, Bernhard Schölkopf: Tailoring density estimation via reproducing kernel moment matching. ICML 2008: 992-999
107EEJulian John McAuley, Tibério S. Caetano, Alexander J. Smola: Robust Near-Isometric Matching via Structured Learning of Graphical Models. NIPS 2008: 1057-1064
106EENovi Quadrianto, Le Song, Alex J. Smola: Kernelized Sorting. NIPS 2008: 1289-1296
105EEXinhua Zhang, Le Song, Arthur Gretton, Alex J. Smola: Kernel Measures of Independence for non-iid Data. NIPS 2008: 1937-1944
104EEOlivier Chapelle, Chuong B. Do, Quoc V. Le, Alexander J. Smola, Choon Hui Teo: Tighter Bounds for Structured Estimation. NIPS 2008: 281-288
103EEMarkus Weimer, Alexandros Karatzoglou, Alex J. Smola: Adaptive collaborative filtering. RecSys 2008: 275-282
102EEArthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola: A Kernel Method for the Two-Sample Problem CoRR abs/0805.2368: (2008)
101EETibério S. Caetano, Julian John McAuley, Li Cheng, Quoc V. Le, Alex J. Smola: Learning Graph Matching CoRR abs/0806.2890: (2008)
100EEJulian John McAuley, Tibério S. Caetano, Alexander J. Smola: Robust Near-Isometric Matching via Structured Learning of Graphical Models CoRR abs/0809.3618: (2008)
99EEMarkus Weimer, Alexandros Karatzoglou, Alex J. Smola: Improving maximum margin matrix factorization. Machine Learning 72(3): 263-276 (2008)
2007
98 Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola: A Kernel Approach to Comparing Distributions. AAAI 2007: 1637-1641
97EEAlex J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf: A Hilbert Space Embedding for Distributions. ALT 2007: 13-31
96EEAlexander J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf: A Hilbert Space Embedding for Distributions. Discovery Science 2007: 40-41
95EETibério S. Caetano, Li Cheng, Quoc V. Le, Alex J. Smola: Learning Graph Matching. ICCV 2007: 1-8
94EELe Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt: A dependence maximization view of clustering. ICML 2007: 815-822
93EELe Song, Alex J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo: Supervised feature selection via dependence estimation. ICML 2007: 823-830
92EELe Song, Justin Bedo, Karsten M. Borgwardt, Arthur Gretton, Alexander J. Smola: Gene selection via the BAHSIC family of algorithms. ISMB/ECCB (Supplement of Bioinformatics) 2007: 490-498
91EEChoon Hui Teo, Alex J. Smola, S. V. N. Vishwanathan, Quoc V. Le: A scalable modular convex solver for regularized risk minimization. KDD 2007: 727-736
90EEAlex J. Smola: Learning Graph Matching. MLG 2007
89EEArthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, Alex J. Smola: A Kernel Statistical Test of Independence. NIPS 2007
88EEAlex J. Smola, S. V. N. Vishwanathan, Quoc V. Le: Bundle Methods for Machine Learning. NIPS 2007
87EEMarkus Weimer, Alexandros Karatzoglou, Quoc V. Le, Alex J. Smola: COFI RANK - Maximum Margin Matrix Factorization for Collaborative Ranking . NIPS 2007
86EELe Song, Alex J. Smola, Karsten M. Borgwardt, Arthur Gretton: Colored Maximum Variance Unfolding. NIPS 2007
85EEChoon Hui Teo, Amir Globerson, Sam T. Roweis, Alex J. Smola: Convex Learning with Invariances. NIPS 2007
84EELe Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo: Supervised Feature Selection via Dependence Estimation CoRR abs/0704.2668: (2007)
83EEQuoc V. Le, Alexander J. Smola: Direct Optimization of Ranking Measures CoRR abs/0704.3359: (2007)
82EES. V. N. Vishwanathan, Alexander J. Smola, René Vidal: Binet-Cauchy Kernels on Dynamical Systems and its Application to the Analysis of Dynamic Scenes. International Journal of Computer Vision 73(1): 95-119 (2007)
2006
81EEYasemin Altun, Alexander J. Smola: Unifying Divergence Minimization and Statistical Inference Via Convex Duality. COLT 2006: 139-153
80EEQuoc V. Le, Alexander J. Smola, Thomas Gärtner, Yasemin Altun: Transductive Gaussian Process Regression with Automatic Model Selection. ECML 2006: 306-317
79EEQuoc V. Le, Alex J. Smola, Thomas Gärtner: Simpler knowledge-based support vector machines. ICML 2006: 521-528
78EEJulian John McAuley, Tibério S. Caetano, Alex J. Smola, Matthias O. Franz: Learning high-order MRF priors of color images. ICML 2006: 617-624
77EEHao Shen, Knut Hüper, Alexander J. Smola: Newton-Like Methods for Nonparametric Independent Component Analysis. ICONIP (1) 2006: 1068-1077
76EEKarsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, Alexander J. Smola: Integrating structured biological data by Kernel Maximum Mean Discrepancy. ISMB (Supplement of Bioinformatics) 2006: 49-57
75EEArthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola: A Kernel Method for the Two-Sample-Problem. NIPS 2006: 513-520
74EEJiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf: Correcting Sample Selection Bias by Unlabeled Data. NIPS 2006: 601-608
73EES. V. N. Vishwanathan, Nicol N. Schraudolph, Alex J. Smola: Step Size Adaptation in Reproducing Kernel Hilbert Space. Journal of Machine Learning Research 7: 1107-1133 (2006)
72EEIchiro Takeuchi, Quoc V. Le, Tim D. Sears, Alexander J. Smola: Nonparametric Quantile Estimation. Journal of Machine Learning Research 7: 1231-1264 (2006)
71EEPannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, Alexander J. Smola: Second Order Cone Programming Approaches for Handling Missing and Uncertain Data. Journal of Machine Learning Research 7: 1283-1314 (2006)
70EEStéphane Canu, Alexander J. Smola: Kernel methods and the exponential family. Neurocomputing 69(7-9): 714-720 (2006)
69EES. V. N. Vishwanathan, Karsten M. Borgwardt, Omri Guttman, Alexander J. Smola: Kernel extrapolation. Neurocomputing 69(7-9): 721-729 (2006)
2005
68EEArthur Gretton, Olivier Bousquet, Alex J. Smola, Bernhard Schölkopf: Measuring Statistical Dependence with Hilbert-Schmidt Norms. ALT 2005: 63-77
67EEStéphane Canu, Alexander J. Smola: Kernel methods and the exponential family. ESANN 2005: 447-454
66EEKarsten M. Borgwardt, Omri Guttman, S. V. N. Vishwanathan, Alexander J. Smola: Joint Regularization. ESANN 2005: 455-460
65EEQuoc V. Le, Alexander J. Smola, Stéphane Canu: Heteroscedastic Gaussian process regression. ICML 2005: 489-496
64EEKarsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J. Smola, Hans-Peter Kriegel: Protein function prediction via graph kernels. ISMB (Supplement of Bioinformatics) 2005: 47-56
63EEVladimir Nikulin, Alex J. Smola: Universal Clustering with Regularization in Probabilistic Space. MLDM 2005: 142-152
62EEThomas Gärtner, Quoc V. Le, Simon Burton, Alex J. Smola, S. V. N. Vishwanathan: Large-Scale Multiclass Transduction. NIPS 2005
61EECheng Soon Ong, Alexander J. Smola, Robert C. Williamson: Learning the Kernel with Hyperkernels. Journal of Machine Learning Research 6: 1043-1071 (2005)
60EEArthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, Bernhard Schölkopf: Kernel Methods for Measuring Independence. Journal of Machine Learning Research 6: 2075-2129 (2005)
59EEAthanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola: Experimentally optimal nu in support vector regression for different noise models and parameter settings. Neural Networks 18(2): 205- (2005)
58EEGaëlle Loosli, Stéphane Canu, S. V. N. Vishwanathan, Alexander J. Smola, M. Chattopadhyay: Boîte à outils SVM simple et rapide. Revue d'Intelligence Artificielle 19(4-5): 741-767 (2005)
2004
57EEYasemin Altun, Thomas Hofmann, Alex J. Smola: Gaussian process classification for segmenting and annotating sequences. ICML 2004
56EECheng Soon Ong, Xavier Mary, Stéphane Canu, Alexander J. Smola: Learning with non-positive kernels. ICML 2004
55EEChiranjib Bhattacharyya, Pannagadatta K. Shivaswamy, Alex J. Smola: A Second Order Cone programming Formulation for Classifying Missing Data. NIPS 2004
54EES. V. N. Vishwanathan, Alex J. Smola: Binet-Cauchy Kernels. NIPS 2004
53EEYasemin Altun, Alexander J. Smola, Thomas Hofmann: Exponential Families for Conditional Random Fields. UAI 2004: 2-9
52EEAthanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola: Experimentally optimal v in support vector regression for different noise models and parameter settings. Neural Networks 17(1): 127-141 (2004)
51EEAlexander J. Smola, Bernhard Schölkopf: A tutorial on support vector regression. Statistics and Computing 14(3): 199-222 (2004)
2003
50 Shahar Mendelson, Alex J. Smola: Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Canberra, Australia, February 11-22, 2002, Revised Lectures Springer 2003
49EEAlex J. Smola, Risi Imre Kondor: Kernels and Regularization on Graphs. COLT 2003: 144-158
48 Cheng Soon Ong, Alex J. Smola: Machine Learning with Hyperkernels. ICML 2003: 568-575
47 S. V. N. Vishwanathan, Alex J. Smola, M. Narasimha Murty: SimpleSVM. ICML 2003: 760-767
46EEAlexander J. Smola, Vishy Vishwanathan, Eleazar Eskin: Laplace Propagation. NIPS 2003
45EESebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(5): 623-633 (2003)
2002
44EEJyrki Kivinen, Alex J. Smola, Robert C. Williamson: Large Margin Classification for Moving Targets. ALT 2002: 113-127
43 Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, Alex J. Smola: Multi-Instance Kernels. ICML 2002: 179-186
42EEBernhard Schölkopf, Alex J. Smola: A Short Introduction to Learning with Kernels. Machine Learning Summer School 2002: 41-64
41EEAlex J. Smola, Bernhard Schölkopf: Bayesian Kernel Methods. Machine Learning Summer School 2002: 65-117
40EECheng Soon Ong, Alexander J. Smola, Robert C. Williamson: Hyperkernels. NIPS 2002: 478-485
39EEGunnar Rätsch, Alexander J. Smola, Sebastian Mika: Adapting Codes and Embeddings for Polychotomies. NIPS 2002: 513-520
38EES. V. N. Vishwanathan, Alexander J. Smola: Fast Kernels for String and Tree Matching. NIPS 2002: 569-576
37EEGlenn Fung, Olvi L. Mangasarian, Alex J. Smola: Minimal Kernel Classifiers. Journal of Machine Learning Research 3: 303-321 (2002)
2001
36EEBernhard Schölkopf, Ralf Herbrich, Alex J. Smola: A Generalized Representer Theorem. COLT/EuroCOLT 2001: 416-426
35EEAdam Kowalczyk, Alex J. Smola, Robert C. Williamson: Kernel Machines and Boolean Functions. NIPS 2001: 439-446
34EEJyrki Kivinen, Alex J. Smola, Robert C. Williamson: Online Learning with Kernels. NIPS 2001: 785-792
33 Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf: Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory 47(6): 2516-2532 (2001)
32EEAlex J. Smola, Sebastian Mika, Bernhard Schölkopf, Robert C. Williamson: Regularized Principal Manifolds. Journal of Machine Learning Research 1: 179-209 (2001)
31 Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, Robert C. Williamson: Estimating the Support of a High-Dimensional Distribution. Neural Computation 13(7): 1443-1471 (2001)
2000
30 Robert C. Williamson, Alex J. Smola, Bernhard Schölkopf: Entropy Numbers of Linear Function Classes. COLT 2000: 309-319
29 Colin Campbell, Nello Cristianini, Alex J. Smola: Query Learning with Large Margin Classifiers. ICML 2000: 111-118
28 Alex J. Smola, Bernhard Schölkopf: Sparse Greedy Matrix Approximation for Machine Learning. ICML 2000: 911-918
27EEAthanassia Chalimourda, Bernhard Schölkopf, Alex J. Smola: Choosing in Support Vector Regression with Different Noise Models: Theory and Experiments. IJCNN (5) 2000: 199-204
26 Alex J. Smola, Zoltán L. Óvári, Robert C. Williamson: Regularization with Dot-Product Kernels. NIPS 2000: 308-314
25 Alex J. Smola, Peter L. Bartlett: Sparse Greedy Gaussian Process Regression. NIPS 2000: 619-625
24 Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller: Robust Ensemble Learning for Data Mining. PAKDD 2000: 341-344
23 Bernhard Schölkopf, Alex J. Smola, Robert C. Williamson, Peter L. Bartlett: New Support Vector Algorithms. Neural Computation 12(5): 1207-1245 (2000)
1999
22EEAlex J. Smola, Robert C. Williamson, Sebastian Mika, Bernhard Schölkopf: Regularized Principal Manifolds. EuroCOLT 1999: 214-229
21EERobert C. Williamson, Alex J. Smola, Bernhard Schölkopf: Entropy Numbers, Operators and Support Vector Kernels. EuroCOLT 1999: 285-299
20 Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Christian Lemmen, Alex J. Smola, Thomas Lengauer, Klaus-Robert Müller: Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites. German Conference on Bioinformatics 1999: 37-43
19EEAlex J. Smola, John Shawe-Taylor, Bernhard Schölkopf, Robert C. Williamson: The Entropy Regularization Information Criterion. NIPS 1999: 342-348
18EESebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Invariant Feature Extraction and Classification in Kernel Spaces. NIPS 1999: 526-532
17EEGunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika: v-Arc: Ensemble Learning in the Presence of Outliers. NIPS 1999: 561-567
16EEBernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, John C. Platt: Support Vector Method for Novelty Detection. NIPS 1999: 582-588
15EEBernhard Schölkopf, Sebastian Mika, Christopher J. C. Burges, Phil Knirsch, Klaus-Robert Müller, Gunnar Rätsch, Alexander J. Smola: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5): 1000-1017 (1999)
14EEBernhard Schölkopf, Klaus-Robert Müller, Alex J. Smola: Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten. Inform., Forsch. Entwickl. 14(3): 154-163 (1999)
1998
13 Bernhard Schölkopf, Alex J. Smola, Phil Knirsch, Chris Burges: Fast Approximation of Support Vector Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature Spaces. DAGM-Symposium 1998: 125-132
12EEBernhard Schölkopf, Peter L. Bartlett, Alex J. Smola, Robert C. Williamson: Shrinking the Tube: A New Support Vector Regression Algorithm. NIPS 1998: 330-336
11EESebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch: Kernel PCA and De-Noising in Feature Spaces. NIPS 1998: 536-542
10EEAlex J. Smola, Thilo-Thomas Frieß, Bernhard Schölkopf: Semiparametric Support Vector and Linear Programming Machines. NIPS 1998: 585-591
9 Alex J. Smola, Bernhard Schölkopf: On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion. Algorithmica 22(1/2): 211-231 (1998)
8 Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10(5): 1299-1319 (1998)
7EEAlex J. Smola, Bernhard Schölkopf, Klaus-Robert Müller: The connection between regularization operators and support vector kernels. Neural Networks 11(4): 637-649 (1998)
1997
6 Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Kernel Principal Component Analysis. ICANN 1997: 583-588
5 Klaus-Robert Müller, Alex J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, Vladimir Vapnik: Predicting Time Series with Support Vector Machines. ICANN 1997: 999-1004
4 Alex J. Smola, Bernhard Schölkopf: From Regularization Operators to Support Vector Kernels. NIPS 1997
3 Bernhard Schölkopf, Patrice Simard, Alex J. Smola, Vladimir Vapnik: Prior Knowledge in Support Vector Kernels. NIPS 1997
1996
2EEHarris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola, Vladimir Vapnik: Support Vector Regression Machines. NIPS 1996: 155-161
1EEVladimir Vapnik, Steven E. Golowich, Alex J. Smola: Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. NIPS 1996: 281-287

Coauthor Index

1Yasemin Altun [53] [57] [80] [81]
2Josh Attenberg [113]
3Peter L. Bartlett [12] [23] [25]
4Justin Bedo [84] [92] [93]
5Chiranjib Bhattacharyya (Chiru Bhattacharyya) [55] [71]
6Karsten M. Borgwardt [64] [66] [69] [74] [75] [76] [84] [86] [92] [93] [94] [98] [102]
7Olivier Bousquet [60] [68]
8Christopher J. C. Burges (Chris Burges) [2] [13] [15]
9Simon Burton [62]
10Tibério S. Caetano [78] [95] [100] [101] [107] [109]
11Colin Campbell [29]
12Stéphane Canu [56] [58] [65] [67] [70]
13Athanassia Chalimourda [27] [52] [59]
14Olivier Chapelle [104]
15M. Chattopadhyay [58]
16Li Cheng [95] [101] [112]
17Nello Cristianini [29]
18Anirban Dasgupta [113]
19Chuong B. Do [104]
20Harris Drucker [2]
21Eleazar Eskin [46]
22Peter A. Flach [43]
23Matthias O. Franz [78]
24Thilo-Thomas Frieß [10]
25Kenji Fukumizu [89]
26Glenn Fung [37]
27Thomas Gärtner [43] [62] [79] [80]
28Amir Globerson [85]
29Steven E. Golowich [1]
30Arthur Gretton [60] [68] [74] [75] [76] [84] [86] [89] [92] [93] [94] [96] [97] [98] [102] [105] [108]
31Omri Guttman [66] [69]
32Ralf Herbrich [36] [60]
33Thomas Hofmann [53] [57]
34Jiayuan Huang [74]
35Knut Hüper [77]
36Alexandros Karatzoglou [87] [99] [103] [111]
37Linda Kaufman [2]
38Jyrki Kivinen [34] [44]
39Phil Knirsch [13] [15]
40Jens Kohlmorgen [5]
41Risi Imre Kondor [49]
42Adam Kowalczyk [35] [43]
43Hans-Peter Kriegel [64] [76]
44John Langford [113]
45Quoc V. Le [62] [65] [72] [79] [80] [83] [87] [88] [91] [95] [101] [104] [109]
46Christian Lemmen [20]
47Thomas Lengauer [20]
48Gaëlle Loosli [58]
49Olvi L. Mangasarian (O. L. Mangasarian) [37]
50Xavier Mary [56]
51Julian John McAuley [78] [100] [101] [107]
52Eric McCreath [110]
53Shahar Mendelson [50]
54Sebastian Mika [11] [15] [17] [18] [20] [22] [24] [32] [39] [45]
55Klaus-Robert Müller [5] [6] [7] [8] [11] [14] [15] [17] [18] [20] [24] [45]
56M. Narasimha Murty [47]
57Vladimir Nikulin [63]
58Cheng Soon Ong [40] [48] [56] [61] [64]
59Takashi Onoda [17] [24]
60Zoltán L. Óvári [26]
61John C. Platt [16] [31]
62Novi Quadrianto [106] [109]
63Malte J. Rasch [75] [76] [98] [102]
64Gunnar Rätsch [5] [11] [15] [17] [18] [20] [24] [39] [45]
65Alistair P. Rendell [110]
66Sam T. Roweis [85]
67Bernhard Schölkopf [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [27] [28] [30] [31] [32] [33] [36] [41] [42] [45] [51] [52] [59] [60] [68] [74] [75] [76] [89] [96] [97] [98] [102] [108]
68Matthias Scholz [11]
69Stefan Schönauer [64]
70Nicol N. Schraudolph [73]
71Tim D. Sears [72]
72John Shawe-Taylor [16] [19] [31]
73Hao Shen [77]
74Qinfeng Shi [112]
75Pannagadatta K. Shivaswamy [55] [71]
76Patrice Y. Simard (Patrice Simard) [3]
77Le Song [84] [86] [89] [92] [93] [94] [96] [97] [105] [106] [108]
78Ichiro Takeuchi [72]
79Choon Hui Teo [85] [89] [91] [104]
80Vladimir Vapnik [1] [2] [3] [5]
81René Vidal [82]
82S. V. N. Vishwanathan (Vishy Vishwanathan) [38] [46] [47] [54] [58] [62] [64] [66] [69] [73] [82] [88] [91]
83Li Wang [112]
84Markus Weimer [87] [99] [103] [111]
85Kilian Weinberger [113]
86Jason Weston [18] [45]
87Robert C. Williamson [12] [16] [19] [21] [22] [23] [26] [30] [31] [32] [33] [34] [35] [40] [44] [61]
88Ahmed El Zein [110]
89Xinhua Zhang [105] [108]
90Alexander Zien [20]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)