2008 | ||
---|---|---|
51 | EE | Fabio De Bona, Stephan Ossowski, Korbinian Schneeberger, Gunnar Rätsch: Optimal spliced alignments of short sequence reads. ECCB 2008: 174-180 |
50 | Sebastian J. Schultheiß, Wolfgang Busch, Jan Lohmann, Oliver Kohlbacher, Gunnar Rätsch: KIRMES: Kernel-based Identification of Regulatory Modules in Euchromatic Sequences. German Conference on Bioinformatics 2008: 158-167 | |
49 | EE | Sören Sonnenburg, Alexander Zien, Petra Philips, Gunnar Rätsch: POIMs: positional oligomer importance matrices - understanding support vector machine-based signal detectors. ISMB 2008: 6-14 |
48 | EE | Gabriele Schweikert, Christian Widmer, Bernhard Schölkopf, Gunnar Rätsch: An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. NIPS 2008: 1433-1440 |
47 | EE | Georg Zeller, Stefan R. Henz, Sascha Laubinger, Detlef Weigel, Gunnar Rätsch: Transcript Normalization and Segmentation of Tiling Array Data. Pacific Symposium on Biocomputing 2008: 527-538 |
2007 | ||
46 | EE | Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch: Boosting Algorithms for Maximizing the Soft Margin. NIPS 2007 |
45 | EE | Uta Schulze, Bettina Hepp, Cheng Soon Ong, Gunnar Rätsch: PALMA: mRNA to genome alignments using large margin algorithms. Bioinformatics 23(15): 1892-1900 (2007) |
2006 | ||
44 | EE | Gunnar Rätsch: Solving Semi-infinite Linear Programs Using Boosting-Like Methods. ALT 2006: 10-11 |
43 | EE | Gunnar Rätsch: The Solution of Semi-Infinite Linear Programs Using Boosting-Like Methods. Discovery Science 2006: 15 |
42 | EE | Hyunjung Shin, N. Jeremy Hill, Gunnar Rätsch: Graph Based Semi-supervised Learning with Sharper Edges. ECML 2006: 401-412 |
41 | EE | Manfred K. Warmuth, Jun Liao, Gunnar Rätsch: Totally corrective boosting algorithms that maximize the margin. ICML 2006: 1001-1008 |
40 | EE | Sören Sonnenburg, Alexander Zien, Gunnar Rätsch: ARTS: accurate recognition of transcription starts in human. ISMB (Supplement of Bioinformatics) 2006: 472-480 |
39 | EE | Gunnar Rätsch, Sören Sonnenburg: Large Scale Hidden Semi-Markov SVMs. NIPS 2006: 1161-1168 |
38 | EE | Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, Bernhard Schölkopf: Large Scale Multiple Kernel Learning. Journal of Machine Learning Research 7: 1531-1565 (2006) |
2005 | ||
37 | EE | Sören Sonnenburg, Gunnar Rätsch, Bernhard Schölkopf: Large scale genomic sequence SVM classifiers. ICML 2005: 848-855 |
36 | EE | Gunnar Rätsch, Sören Sonnenburg, Bernhard Schölkopf: RASE: recognition of alternatively spliced exons in C.elegans. ISMB (Supplement of Bioinformatics) 2005: 369-377 |
35 | EE | Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer: A General and Efficient Multiple Kernel Learning Algorithm. NIPS 2005 |
34 | EE | Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer: Learning Interpretable SVMs for Biological Sequence Classification. RECOMB 2005: 389-407 |
33 | EE | Koji Tsuda, Gunnar Rätsch: Image reconstruction by linear programming. IEEE Transactions on Image Processing 14(6): 737-744 (2005) |
32 | EE | Klaus-Robert Müller, Gunnar Rätsch, Sören Sonnenburg, Sebastian Mika, Michael Grimm, Nikolaus Heinrich: Classifying 'Drug-likeness' with Kernel-Based Learning Methods. Journal of Chemical Information and Modeling 45(2): 249-253 (2005) |
31 | EE | Gunnar Rätsch, Manfred K. Warmuth: Efficient Margin Maximizing with Boosting. Journal of Machine Learning Research 6: 2131-2152 (2005) |
30 | EE | Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth: Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. Journal of Machine Learning Research 6: 995-1018 (2005) |
2004 | ||
29 | Olivier Bousquet, Ulrike von Luxburg, Gunnar Rätsch: Advanced Lectures on Machine Learning, ML Summer Schools 2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures Springer 2004 | |
28 | EE | Koji Tsuda, Gunnar Rätsch, Manfred K. Warmuth: Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection. NIPS 2004 |
2003 | ||
27 | EE | Koji Tsuda, Gunnar Rätsch: Image Reconstruction by Linear Programming. NIPS 2003 |
26 | EE | Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(5): 623-633 (2003) |
25 | EE | Manfred K. Warmuth, Jun Liao, Gunnar Rätsch, Michael Mathieson, Santosh Putta, Christian Lemmen: Active Learning with Support Vector Machines in the Drug Discovery Process. Journal of Chemical Information and Computer Sciences 43(2): 667-673 (2003) |
2002 | ||
24 | EE | Gunnar Rätsch, Manfred K. Warmuth: Maximizing the Margin with Boosting. COLT 2002: 334-350 |
23 | EE | Sören Sonnenburg, Gunnar Rätsch, Arun K. Jagota, Klaus-Robert Müller: New Methods for Splice Site Recognition. ICANN 2002: 329-336 |
22 | EE | Ron Meir, Gunnar Rätsch: An Introduction to Boosting and Leveraging. Machine Learning Summer School 2002: 118-183 |
21 | EE | Gunnar Rätsch, Alexander J. Smola, Sebastian Mika: Adapting Codes and Embeddings for Polychotomies. NIPS 2002: 513-520 |
20 | EE | Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Klaus-Robert Müller: Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification. IEEE Trans. Pattern Anal. Mach. Intell. 24(9): 1184-1199 (2002) |
19 | Gunnar Rätsch, Ayhan Demiriz, Kristin P. Bennett: Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces. Machine Learning 48(1-3): 189-218 (2002) | |
18 | EE | Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller: A New Discriminative Kernel from Probabilistic Models. Neural Computation 14(10): 2397-2414 (2002) |
2001 | ||
17 | EE | Koji Tsuda, Gunnar Rätsch, Sebastian Mika, Klaus-Robert Müller: Learning to Predict the Leave-One-Out Error of Kernel Based Classifiers. ICANN 2001: 331-338 |
16 | EE | Manfred K. Warmuth, Gunnar Rätsch, Michael Mathieson, Jun Liao, Christian Lemmen: Active Learning in the Drug Discovery Process. NIPS 2001: 1449-1456 |
15 | EE | Gunnar Rätsch, Sebastian Mika, Manfred K. Warmuth: On the Convergence of Leveraging. NIPS 2001: 487-494 |
14 | EE | Koji Tsuda, Motoaki Kawanabe, Gunnar Rätsch, Sören Sonnenburg, Klaus-Robert Müller: A New Discriminative Kernel From Probabilistic Models. NIPS 2001: 977-984 |
13 | Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller: Soft Margins for AdaBoost. Machine Learning 42(3): 287-320 (2001) | |
2000 | ||
12 | Gunnar Rätsch, Manfred K. Warmuth, Sebastian Mika, Takashi Onoda, Steven Lemm, Klaus-Robert Müller: Barrier Boosting. COLT 2000: 170-179 | |
11 | Sebastian Mika, Gunnar Rätsch, Klaus-Robert Müller: A Mathematical Programming Approach to the Kernel Fisher Algorithm. NIPS 2000: 591-597 | |
10 | Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Sebastian Mika, Takashi Onoda, Klaus-Robert Müller: Robust Ensemble Learning for Data Mining. PAKDD 2000: 341-344 | |
9 | Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Thomas Lengauer, Klaus-Robert Müller: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(9): 799-807 (2000) | |
1999 | ||
8 | Alexander Zien, Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Christian Lemmen, Alex J. Smola, Thomas Lengauer, Klaus-Robert Müller: Engineering Support Vector Machine Kerneis That Recognize Translation Initialion Sites. German Conference on Bioinformatics 1999: 37-43 | |
7 | EE | Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller: Invariant Feature Extraction and Classification in Kernel Spaces. NIPS 1999: 526-532 |
6 | EE | Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika: v-Arc: Ensemble Learning in the Presence of Outliers. NIPS 1999: 561-567 |
5 | EE | Bernhard Schölkopf, Sebastian Mika, Christopher J. C. Burges, Phil Knirsch, Klaus-Robert Müller, Gunnar Rätsch, Alexander J. Smola: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5): 1000-1017 (1999) |
1998 | ||
4 | Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller: An Improvement of AdaBoost to Avoid Overfitting. ICONIP 1998: 506-509 | |
3 | EE | Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, Gunnar Rätsch: Kernel PCA and De-Noising in Feature Spaces. NIPS 1998: 536-542 |
2 | EE | Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller: Regularizing AdaBoost. NIPS 1998: 564-570 |
1997 | ||
1 | Klaus-Robert Müller, Alex J. Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, Vladimir Vapnik: Predicting Time Series with Support Vector Machines. ICANN 1997: 999-1004 |