| 2008 |
| 46 | EE | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
Correction to "The Importance of Convexity in Learning With Squared Loss".
IEEE Transactions on Information Theory 54(9): 4395 (2008) |
| 2005 |
| 45 | EE | Omri Guttman,
S. V. N. Vishwanathan,
Robert C. Williamson:
Learnability of Probabilistic Automata via Oracles.
ALT 2005: 171-182 |
| 44 | EE | Cheng Soon Ong,
Alexander J. Smola,
Robert C. Williamson:
Learning the Kernel with Hyperkernels.
Journal of Machine Learning Research 6: 1043-1071 (2005) |
| 2003 |
| 43 | EE | Edward Harrington,
Ralf Herbrich,
Jyrki Kivinen,
John C. Platt,
Robert C. Williamson:
Online Bayes Point Machines.
PAKDD 2003: 241-252 |
| 2002 |
| 42 | EE | Jyrki Kivinen,
Alex J. Smola,
Robert C. Williamson:
Large Margin Classification for Moving Targets.
ALT 2002: 113-127 |
| 41 | EE | Shahar Mendelson,
Robert C. Williamson:
Agnostic Learning Nonconvex Function Classes.
COLT 2002: 1-13 |
| 40 | EE | Cheng Soon Ong,
Alexander J. Smola,
Robert C. Williamson:
Hyperkernels.
NIPS 2002: 478-485 |
| 39 | | Ying Guo,
Peter L. Bartlett,
John Shawe-Taylor,
Robert C. Williamson:
Covering numbers for support vector machines.
IEEE Transactions on Information Theory 48(1): 239-250 (2002) |
| 38 | EE | Ralf Herbrich,
Robert C. Williamson:
Algorithmic Luckiness.
Journal of Machine Learning Research 3: 175-212 (2002) |
| 2001 |
| 37 | EE | Ralf Herbrich,
Robert C. Williamson:
Algorithmic Luckiness.
NIPS 2001: 391-397 |
| 36 | EE | Adam Kowalczyk,
Alex J. Smola,
Robert C. Williamson:
Kernel Machines and Boolean Functions.
NIPS 2001: 439-446 |
| 35 | EE | Jyrki Kivinen,
Alex J. Smola,
Robert C. Williamson:
Online Learning with Kernels.
NIPS 2001: 785-792 |
| 34 | | Robert C. Williamson,
Alex J. Smola,
Bernhard Schölkopf:
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators.
IEEE Transactions on Information Theory 47(6): 2516-2532 (2001) |
| 33 | EE | Alex J. Smola,
Sebastian Mika,
Bernhard Schölkopf,
Robert C. Williamson:
Regularized Principal Manifolds.
Journal of Machine Learning Research 1: 179-209 (2001) |
| 32 | EE | Robert E. Mahony,
Robert C. Williamson:
Prior Knowledge and Preferential Structures in Gradient Descent Learning Algorithms.
Journal of Machine Learning Research 1: 311-355 (2001) |
| 31 | | Bernhard Schölkopf,
John C. Platt,
John Shawe-Taylor,
Alex J. Smola,
Robert C. Williamson:
Estimating the Support of a High-Dimensional Distribution.
Neural Computation 13(7): 1443-1471 (2001) |
| 2000 |
| 30 | | Robert C. Williamson,
Alex J. Smola,
Bernhard Schölkopf:
Entropy Numbers of Linear Function Classes.
COLT 2000: 309-319 |
| 29 | | Thore Graepel,
Ralf Herbrich,
Robert C. Williamson:
From Margin to Sparsity.
NIPS 2000: 210-216 |
| 28 | | Alex J. Smola,
Zoltán L. Óvári,
Robert C. Williamson:
Regularization with Dot-Product Kernels.
NIPS 2000: 308-314 |
| 27 | | Bernhard Schölkopf,
Alex J. Smola,
Robert C. Williamson,
Peter L. Bartlett:
New Support Vector Algorithms.
Neural Computation 12(5): 1207-1245 (2000) |
| 1999 |
| 26 | EE | Ying Guo,
Peter L. Bartlett,
John Shawe-Taylor,
Robert C. Williamson:
Covering Numbers for Support Vector Machines.
COLT 1999: 267-277 |
| 25 | EE | Alex J. Smola,
Robert C. Williamson,
Sebastian Mika,
Bernhard Schölkopf:
Regularized Principal Manifolds.
EuroCOLT 1999: 214-229 |
| 24 | EE | Robert C. Williamson,
Alex J. Smola,
Bernhard Schölkopf:
Entropy Numbers, Operators and Support Vector Kernels.
EuroCOLT 1999: 285-299 |
| 23 | EE | Alex J. Smola,
John Shawe-Taylor,
Bernhard Schölkopf,
Robert C. Williamson:
The Entropy Regularization Information Criterion.
NIPS 1999: 342-348 |
| 22 | EE | Bernhard Schölkopf,
Robert C. Williamson,
Alex J. Smola,
John Shawe-Taylor,
John C. Platt:
Support Vector Method for Novelty Detection.
NIPS 1999: 582-588 |
| 1998 |
| 21 | EE | Bernhard Schölkopf,
Peter L. Bartlett,
Alex J. Smola,
Robert C. Williamson:
Shrinking the Tube: A New Support Vector Regression Algorithm.
NIPS 1998: 330-336 |
| 20 | | John Shawe-Taylor,
Peter L. Bartlett,
Robert C. Williamson,
Martin Anthony:
Structural Risk Minimization Over Data-Dependent Hierarchies.
IEEE Transactions on Information Theory 44(5): 1926-1940 (1998) |
| 19 | | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
The Importance of Convexity in Learning with Squared Loss.
IEEE Transactions on Information Theory 44(5): 1974-1980 (1998) |
| 1997 |
| 18 | EE | John Shawe-Taylor,
Robert C. Williamson:
A PAC Analysis of a Bayesian Estimator.
COLT 1997: 2-9 |
| 17 | | Kim L. Blackmore,
Robert C. Williamson,
Iven M. Y. Mareels:
Decision region approximation by polynomials or neural networks.
IEEE Transactions on Information Theory 43(3): 903-907 (1997) |
| 16 | EE | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
Correction to 'Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes'.
Neural Computation 9(4): 765-769 (1997) |
| 1996 |
| 15 | EE | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
The Importance of Convexity in Learning with Squared Loss.
COLT 1996: 140-146 |
| 14 | EE | John Shawe-Taylor,
Peter L. Bartlett,
Robert C. Williamson,
Martin Anthony:
A Framework for Structural Risk Minimisation.
COLT 1996: 68-76 |
| 13 | | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
Efficient agnostic learning of neural networks with bounded fan-in.
IEEE Transactions on Information Theory 42(6): 2118-2132 (1996) |
| 12 | | Peter L. Bartlett,
Philip M. Long,
Robert C. Williamson:
Fat-Shattering and the Learnability of Real-Valued Functions.
J. Comput. Syst. Sci. 52(3): 434-452 (1996) |
| 1995 |
| 11 | EE | Kim L. Blackmore,
Robert C. Williamson,
Iven M. Y. Mareels,
William A. Sethares:
Online Learning via Congregational Gradient Descent.
COLT 1995: 265-272 |
| 10 | EE | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
On Efficient Agnostic Learning of Linear Combinations of Basis Functions.
COLT 1995: 369-376 |
| 9 | EE | Adam Kowalczyk,
Jacek Szymanski,
Peter L. Bartlett,
Robert C. Williamson:
Examples of learning curves from a modified VC-formalism.
NIPS 1995: 344-350 |
| 1994 |
| 8 | EE | Peter L. Bartlett,
Philip M. Long,
Robert C. Williamson:
Fat-Shattering and the Learnability of Real-Valued Functions.
COLT 1994: 299-310 |
| 7 | EE | Wee Sun Lee,
Peter L. Bartlett,
Robert C. Williamson:
Lower Bounds on the VC-Dimension of Smoothly Parametrized Function Classes.
COLT 1994: 362-367 |
| 1992 |
| 6 | EE | Uwe Helmke,
Robert C. Williamson:
Rational Parametrizations of Neural Networks.
NIPS 1992: 623-630 |
| 1991 |
| 5 | EE | Peter L. Bartlett,
Robert C. Williamson:
Investigating the Distribution Assumptions in the Pac Learning Model.
COLT 1991: 24-32 |
| 4 | EE | Robert C. Williamson,
Peter L. Bartlett:
Splines, Rational Functions and Neural Networks.
NIPS 1991: 1040-1047 |
| 3 | EE | Robert C. Williamson:
An extreme limit theorem for dependency bounds of normalized sums of random variables.
Inf. Sci. 56(1-3): 113-141 (1991) |
| 1990 |
| 2 | EE | Robert C. Williamson:
epsilon-Entropy and the Complexity of Feedforward Neural Networks.
NIPS 1990: 946-952 |
| 1 | EE | Robert C. Williamson,
Tom Downs:
Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds.
Int. J. Approx. Reasoning 4(2): 89-158 (1990) |