dblp.uni-trier.dewww.uni-trier.de

Rocco A. Servedio

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2009
106EEKevin Matulef, Ryan O'Donnell, Ronitt Rubinfeld, Rocco A. Servedio: Testing halfspaces. SODA 2009: 256-264
105EEIlias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, Emanuele Viola: Bounded Independence Fools Halfspaces CoRR abs/0902.3757: (2009)
104EERonitt Rubinfeld, Rocco A. Servedio: Testing monotone high-dimensional distributions. Random Struct. Algorithms 34(1): 24-44 (2009)
103EEMarcus Hutter, Rocco A. Servedio: Preface. Theor. Comput. Sci. 410(19): 1747-1748 (2009)
2008
102 Rocco A. Servedio, Tong Zhang: 21st Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland, July 9-12, 2008 Omnipress 2008
101EEJeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, Andrew Wan: Learning Random Monotone DNF. APPROX-RANDOM 2008: 483-497
100EEAdam R. Klivans, Ryan O'Donnell, Rocco A. Servedio: Learning Geometric Concepts via Gaussian Surface Area. FOCS 2008: 541-550
99EEDana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio, Andrew Wan, Hoeteck Wee: Optimal Cryptographic Hardness of Learning Monotone Functions. ICALP (1) 2008: 36-47
98EEIlias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, Andrew Wan: Efficiently Testing Sparse GF(2) Polynomials. ICALP (1) 2008: 502-514
97EEPhilip M. Long, Rocco A. Servedio: Random classification noise defeats all convex potential boosters. ICML 2008: 608-615
96EEPhilip M. Long, Rocco A. Servedio: Adaptive Martingale Boosting. NIPS 2008: 977-984
95EERyan O'Donnell, Rocco A. Servedio: The chow parameters problem. STOC 2008: 517-526
94EERocco A. Servedio: Learning Constant-Depth Circuits. Encyclopedia of Algorithms 2008
93EEIlias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, Andrew Wan: Efficiently Testing Sparse GF(2) Polynomials CoRR abs/0805.1765: (2008)
92EEAdam R. Klivans, Rocco A. Servedio: Learning intersections of halfspaces with a margin. J. Comput. Syst. Sci. 74(1): 35-48 (2008)
91EERyan O'Donnell, Rocco A. Servedio: Extremal properties of polynomial threshold functions. J. Comput. Syst. Sci. 74(3): 298-312 (2008)
90EEJon Feldman, Ryan O'Donnell, Rocco A. Servedio: Learning Mixtures of Product Distributions over Discrete Domains. SIAM J. Comput. 37(5): 1536-1564 (2008)
89EEAdam Tauman Kalai, Adam R. Klivans, Yishay Mansour, Rocco A. Servedio: Agnostically Learning Halfspaces. SIAM J. Comput. 37(6): 1777-1805 (2008)
88EEAlp Atici, Rocco A. Servedio: Learning unions of omega(1)-dimensional rectangles. Theor. Comput. Sci. 405(3): 209-222 (2008)
2007
87 Marcus Hutter, Rocco A. Servedio, Eiji Takimoto: Algorithmic Learning Theory, 18th International Conference, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings Springer 2007
86EEMarcus Hutter, Rocco A. Servedio, Eiji Takimoto: Editors' Introduction. ALT 2007: 1-8
85EEDana Glasner, Rocco A. Servedio: Distribution-Free Testing Lower Bounds for Basic Boolean Functions. APPROX-RANDOM 2007: 494-508
84EEIlias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A. Servedio, Andrew Wan: Testing for Concise Representations. FOCS 2007: 549-558
83EEMichael O. Rabin, Rocco A. Servedio, Christopher Thorpe: Highly Efficient Secrecy-Preserving Proofs of Correctness of Computations and Applications. LICS 2007: 63-76
82EEPhilip M. Long, Rocco A. Servedio: Boosting the Area under the ROC Curve. NIPS 2007
81EEZafer Barutçuoglu, Philip M. Long, Rocco A. Servedio: One-Pass Boosting. NIPS 2007
80EEAlp Atici, Rocco A. Servedio: Quantum Algorithms for Learning and Testing Juntas CoRR abs/0707.3479: (2007)
79EERocco A. Servedio: Every Linear Threshold Function has a Low-Weight Approximator. Computational Complexity 16(2): 180-209 (2007)
78EEIlias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A. Servedio, Andrew Wan: Testing for Concise Representations. Electronic Colloquium on Computational Complexity (ECCC) 14(077): (2007)
77EEKevin Matulef, Ryan O'Donnell, Ronitt Rubinfeld, Rocco A. Servedio: Testing Halfspaces. Electronic Colloquium on Computational Complexity (ECCC) 14(128): (2007)
76EEJeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, Andrew Wan: Learning Random Monotone DNF. Electronic Colloquium on Computational Complexity (ECCC) 14(129): (2007)
75EEJon Feldman, Tal Malkin, Rocco A. Servedio, Clifford Stein, Martin J. Wainwright: LP Decoding Corrects a Constant Fraction of Errors. IEEE Transactions on Information Theory 53(1): 82-89 (2007)
74EEPhilip M. Long, Rocco A. Servedio, Hans-Ulrich Simon: Discriminative learning can succeed where generative learning fails. Inf. Process. Lett. 103(4): 131-135 (2007)
73EEAriel Elbaz, Homin K. Lee, Rocco A. Servedio, Andrew Wan: Separating Models of Learning from Correlated and Uncorrelated Data. Journal of Machine Learning Research 8: 277-290 (2007)
72EEHomin K. Lee, Rocco A. Servedio, Andrew Wan: DNF are teachable in the average case. Machine Learning 69(2-3): 79-96 (2007)
71EERyan O'Donnell, Rocco A. Servedio: Learning Monotone Decision Trees in Polynomial Time. SIAM J. Comput. 37(3): 827-844 (2007)
70EELisa Hellerstein, Rocco A. Servedio: On PAC learning algorithms for rich Boolean function classes. Theor. Comput. Sci. 384(1): 66-76 (2007)
2006
69EEAlp Atici, Rocco A. Servedio: Learning Unions of omega(1)-Dimensional Rectangles. ALT 2006: 32-47
68EEJon Feldman, Rocco A. Servedio, Ryan O'Donnell: PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption. COLT 2006: 20-34
67EEHomin K. Lee, Rocco A. Servedio, Andrew Wan: DNF Are Teachable in the Average Case. COLT 2006: 214-228
66EEPhilip M. Long, Rocco A. Servedio: Discriminative Learning Can Succeed Where Generative Learning Fails. COLT 2006: 319-334
65EERocco A. Servedio: Every Linear Threshold Function has a Low-Weight Approximator. IEEE Conference on Computational Complexity 2006: 18-32
64EERyan O'Donnell, Rocco A. Servedio: Learning Monotone Decision Trees in Polynomial Time. IEEE Conference on Computational Complexity 2006: 213-225
63EEPhilip M. Long, Rocco A. Servedio: Attribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributions. NIPS 2006: 921-928
62EERocco A. Servedio: On PAC Learning Algorithms for Rich Boolean Function Classes. TAMC 2006: 442-451
61EEJon Feldman, Ryan O'Donnell, Rocco A. Servedio: PAC Learning Mixtures of Axis-Aligned Gaussians with No Separation Assumption CoRR abs/cs/0609093: (2006)
60EEMarta Arias, Aaron Feigelson, Roni Khardon, Rocco A. Servedio: Polynomial certificates for propositional classes. Inf. Comput. 204(5): 816-834 (2006)
59EEAdam R. Klivans, Rocco A. Servedio: Toward Attribute Efficient Learning of Decision Lists and Parities. Journal of Machine Learning Research 7: 587-602 (2006)
58EERocco A. Servedio: On learning embedded midbit functions. Theor. Comput. Sci. 350(1): 13-23 (2006)
57EEJeffrey C. Jackson, Rocco A. Servedio: On Learning Random DNF Formulas Under the Uniform Distribution. Theory of Computing 2(1): 147-172 (2006)
2005
56EEJeffrey C. Jackson, Rocco A. Servedio: On Learning Random DNF Formulas Under the Uniform Distribution. APPROX-RANDOM 2005: 342-353
55EEAriel Elbaz, Homin K. Lee, Rocco A. Servedio, Andrew Wan: Separating Models of Learning from Correlated and Uncorrelated Data. COLT 2005: 637-651
54EEPhilip M. Long, Rocco A. Servedio: Martingale Boosting. COLT 2005: 79-94
53EEAdam Tauman Kalai, Adam R. Klivans, Yishay Mansour, Rocco A. Servedio: Agnostically Learning Halfspaces. FOCS 2005: 11-20
52EERyan O'Donnell, Michael E. Saks, Oded Schramm, Rocco A. Servedio: Every decision tree has an in.uential variable. FOCS 2005: 31-39
51EEJon Feldman, Ryan O'Donnell, Rocco A. Servedio: Learning mixtures of product distributions over discrete domains. FOCS 2005: 501-510
50EEPhilip M. Long, Vinay Varadan, Sarah Gilman, Mark Treshock, Rocco A. Servedio: Unsupervised evidence integration. ICML 2005: 521-528
49EERonitt Rubinfeld, Rocco A. Servedio: Testing monotone high-dimensional distributions. STOC 2005: 147-156
48EERyan O'Donnell, Michael E. Saks, Oded Schramm, Rocco A. Servedio: Every decision tree has an influential variable CoRR abs/cs/0508071: (2005)
47EEAlp Atici, Rocco A. Servedio: Learning Unions of $\omega(1)$-Dimensional Rectangles CoRR abs/cs/0510038: (2005)
46EERocco A. Servedio, Andrew Wan: Computing sparse permanents faster. Inf. Process. Lett. 96(3): 89-92 (2005)
45EERoni Khardon, Dan Roth, Rocco A. Servedio: Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms. J. Artif. Intell. Res. (JAIR) 24: 341-356 (2005)
44EENader H. Bshouty, Elchanan Mossel, Ryan O'Donnell, Rocco A. Servedio: Learning DNF from random walks. J. Comput. Syst. Sci. 71(3): 250-265 (2005)
43EEAdam Tauman Kalai, Rocco A. Servedio: Boosting in the presence of noise. J. Comput. Syst. Sci. 71(3): 266-290 (2005)
42EERoni Khardon, Rocco A. Servedio: Maximum Margin Algorithms with Boolean Kernels. Journal of Machine Learning Research 6: 1405-1429 (2005)
41EEJeffrey C. Jackson, Rocco A. Servedio: Learning Random Log-Depth Decision Trees under Uniform Distribution. SIAM J. Comput. 34(5): 1107-1128 (2005)
2004
40EEAdam R. Klivans, Rocco A. Servedio: Toward Attribute Efficient Learning of Decision Lists and Parities. COLT 2004: 224-238
39EEAdam R. Klivans, Rocco A. Servedio: Learning Intersections of Halfspaces with a Margin. COLT 2004: 348-362
38EEAdam R. Klivans, Rocco A. Servedio: Perceptron-Like Performance for Intersections of Halfspaces. COLT 2004: 639-640
37EEAlp Atici, Rocco A. Servedio: Improved Bounds on Quantum Learning Algorithms CoRR quant-ph/0411140: (2004)
36EERocco A. Servedio: Monotone Boolean formulas can approximate monotone linear threshold functions. Discrete Applied Mathematics 142(1-3): 181-187 (2004)
35EERocco A. Servedio: On learning monotone DNF under product distributions. Inf. Comput. 193(1): 57-74 (2004)
34EEAdam R. Klivans, Rocco A. Servedio: Learning DNF in time 2Õ(n1/3). J. Comput. Syst. Sci. 68(2): 303-318 (2004)
33EEAdam R. Klivans, Ryan O'Donnell, Rocco A. Servedio: Learning intersections and thresholds of halfspaces. J. Comput. Syst. Sci. 68(4): 808-840 (2004)
32EEElchanan Mossel, Ryan O'Donnell, Rocco A. Servedio: Learning functions of k relevant variables. J. Comput. Syst. Sci. 69(3): 421-434 (2004)
31EERocco A. Servedio, Steven J. Gortler: Equivalences and Separations Between Quantum and Classical Learnability. SIAM J. Comput. 33(5): 1067-1092 (2004)
2003
30EEMarta Arias, Roni Khardon, Rocco A. Servedio: Polynomial Certificates for Propositional Classes. COLT 2003: 537-551
29EEJeffrey C. Jackson, Rocco A. Servedio: Learning Random Log-Depth Decision Trees under the Uniform Distribution. COLT 2003: 610-624
28EERoni Khardon, Rocco A. Servedio: Maximum Margin Algorithms with Boolean Kernels. COLT 2003: 87-101
27EENader H. Bshouty, Elchanan Mossel, Ryan O'Donnell, Rocco A. Servedio: Learning DNF from Random Walks. FOCS 2003: 189-
26EERyan O'Donnell, Rocco A. Servedio: Extremal properties of polynomial threshold functions. IEEE Conference on Computational Complexity 2003: 3-12
25EEAdam Kalai, Rocco A. Servedio: Boosting in the presence of noise. STOC 2003: 195-205
24EEElchanan Mossel, Ryan O'Donnell, Rocco A. Servedio: Learning juntas. STOC 2003: 206-212
23EERyan O'Donnell, Rocco A. Servedio: New degree bounds for polynomial threshold functions. STOC 2003: 325-334
22EEAdam R. Klivans, Rocco A. Servedio: Toward Attribute Efficient Learning Algorithms CoRR cs.LG/0311042: (2003)
21EERocco A. Servedio: Smooth Boosting and Learning with Malicious Noise. Journal of Machine Learning Research 4: 633-648 (2003)
20EEAdam R. Klivans, Rocco A. Servedio: Boosting and Hard-Core Set Construction. Machine Learning 51(3): 217-238 (2003)
2002
19EERocco A. Servedio: On Learning Embedded Midbit Functions. ALT 2002: 69-82
18EEAdam Klivans, Ryan O'Donnell, Rocco A. Servedio: Learning Intersections and Thresholds of Halfspaces. FOCS 2002: 177-186
17EEJeffrey C. Jackson, Adam Klivans, Rocco A. Servedio: Learnability beyond AC0. IEEE Conference on Computational Complexity 2002: 26
16EEJeffrey C. Jackson, Adam Klivans, Rocco A. Servedio: Learnability beyond AC0. STOC 2002: 776-784
15 Rocco A. Servedio: PAC Analogues of Perceptron and Winnow Via Boosting the Margin. Machine Learning 47(2-3): 133-151 (2002)
14EERocco A. Servedio: Perceptron, Winnow, and PAC Learning. SIAM J. Comput. 31(5): 1358-1369 (2002)
2001
13EERocco A. Servedio: Smooth Boosting and Learning with Malicious Noise. COLT/EuroCOLT 2001: 473-489
12EERocco A. Servedio: On Learning Monotone DNF under Product Distributions. COLT/EuroCOLT 2001: 558-573
11EERocco A. Servedio: Separating Quantum and Classical Learning. ICALP 2001: 1065-1080
10EERocco A. Servedio, Steven J. Gortler: Quantum versus Classical Learnability. IEEE Conference on Computational Complexity 2001: 138-148
9EERoni Khardon, Dan Roth, Rocco A. Servedio: Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms. NIPS 2001: 423-430
8EEAdam Klivans, Rocco A. Servedio: Learning DNF in time 2Õ(n1/3). STOC 2001: 258-265
7EERocco A. Servedio: On Learning Monotone DNF under Product Distributions Electronic Colloquium on Computational Complexity (ECCC) 8(6): (2001)
6EERocco A. Servedio: On the limits of efficient teachability. Inf. Process. Lett. 79(6): 267-272 (2001)
2000
5 Rocco A. Servedio: PAC Analogues of Perceptron and Winnow via Boosting the Margin. COLT 2000: 148-157
4 Rocco A. Servedio: Computational Sample Complexity and Attribute-Efficient Learning. J. Comput. Syst. Sci. 60(1): 161-178 (2000)
1999
3EERocco A. Servedio: On PAC Learning Using Winnow, Perceptron, and a Perceptron-like Algorithm. COLT 1999: 296-307
2EEAdam Klivans, Rocco A. Servedio: Boosting and Hard-Core Sets. FOCS 1999: 624-633
1EERocco A. Servedio: Computational Sample Complexity and Attribute-Efficient Learning. STOC 1999: 701-710

Coauthor Index

1Marta Arias [30] [60]
2Alp Atici [37] [47] [69] [80] [88]
3Zafer Barutçuoglu [81]
4Nader H. Bshouty [27] [44]
5Dana Dachman-Soled [99]
6Ilias Diakonikolas [78] [84] [93] [98] [105]
7Ariel Elbaz [55] [73]
8Aaron Feigelson [60]
9Jon Feldman [51] [61] [68] [75] [90]
10Sarah Gilman [50]
11Dana Glasner [85]
12Parikshit Gopalan [105]
13Steven J. Gortler [10] [31]
14Lisa Hellerstein [70]
15Marcus Hutter [86] [87] [103]
16Jeffrey C. Jackson [16] [17] [29] [41] [56] [57] [76] [101]
17Ragesh Jaiswal [105]
18Adam Tauman Kalai (Adam Kalai) [25] [43] [53] [89]
19Roni Khardon [9] [28] [30] [42] [45] [60]
20Adam R. Klivans (Adam Klivans) [2] [8] [16] [17] [18] [20] [22] [33] [34] [38] [39] [40] [53] [59] [89] [92] [100]
21Homin K. Lee [55] [67] [72] [73] [76] [78] [84] [93] [98] [99] [101]
22Philip M. Long [50] [54] [63] [66] [74] [81] [82] [96] [97]
23Tal Malkin [75] [99]
24Yishay Mansour [53] [89]
25Kevin Matulef [77] [78] [84] [93] [98] [106]
26Elchanan Mossel [24] [27] [32] [44]
27Ryan O'Donnell [18] [23] [24] [26] [27] [32] [33] [44] [48] [51] [52] [61] [64] [68] [71] [77] [90] [91] [95] [100] [106]
28Krzysztof Onak [78] [84]
29Michael O. Rabin [83]
30Dan Roth [9] [45]
31Ronitt Rubinfeld [49] [77] [78] [84] [104] [106]
32Michael E. Saks [48] [52]
33Oded Schramm [48] [52]
34Hans-Ulrich Simon [74]
35Clifford Stein [75]
36Eiji Takimoto [86] [87]
37Christopher Thorpe [83]
38Mark Treshock [50]
39Vinay Varadan [50]
40Emanuele Viola [105]
41Martin J. Wainwright [75]
42Andrew Wan [46] [55] [67] [72] [73] [76] [78] [84] [93] [98] [99] [101]
43Hoeteck Wee [99]
44Tong Zhang [102]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)