2008 |
35 | EE | Murray A. Jorgensen,
Geoffrey J. McLachlan:
Wallace's Approach to Unsupervised Learning: The Snob Program.
Comput. J. 51(5): 571-578 (2008) |
34 | EE | Xindong Wu,
Vipin Kumar,
J. Ross Quinlan,
Joydeep Ghosh,
Qiang Yang,
Hiroshi Motoda,
Geoffrey J. McLachlan,
Angus F. M. Ng,
Bing Liu,
Philip S. Yu,
Zhi-Hua Zhou,
Michael Steinbach,
David J. Hand,
Dan Steinberg:
Top 10 algorithms in data mining.
Knowl. Inf. Syst. 14(1): 1-37 (2008) |
2007 |
33 | EE | Vladimir Nikulin,
Geoffrey J. McLachlan:
Merging Algorithm to Reduce Dimensionality in Application to Web-Mining.
Australian Conference on Artificial Intelligence 2007: 755-761 |
32 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan:
Extension of mixture-of-experts networks for binary classification of hierarchical data.
Artificial Intelligence in Medicine 41(1): 57-67 (2007) |
31 | EE | Jangsun Baek,
Young Sook Son,
Geoffrey J. McLachlan:
Segmentation and intensity estimation of microarray images using a gamma-t mixture model.
Bioinformatics 23(4): 458-465 (2007) |
30 | EE | Geoffrey J. McLachlan,
Richard Bean,
Liat Ben-Tovim Jones:
Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution.
Computational Statistics & Data Analysis 51(11): 5327-5338 (2007) |
29 | EE | Kui Wang,
Kelvin K. W. Yau,
Andy H. Lee,
Geoffrey J. McLachlan:
Multilevel survival modelling of recurrent urinary tract infections.
Computer Methods and Programs in Biomedicine 87(3): 225-229 (2007) |
2006 |
28 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan,
Andy H. Lee:
An incremental EM-based learning approach for on-line prediction of hospital resource utilization.
Artificial Intelligence in Medicine 36(3): 257-267 (2006) |
27 | EE | Geoffrey J. McLachlan,
Richard Bean,
Liat Ben-Tovim Jones:
A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays.
Bioinformatics 22(13): 1608-1615 (2006) |
26 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan,
Kui Wang,
Liat Ben-Tovim Jones,
S.-W. Ng:
A Mixture model with random-effects components for clustering correlated gene-expression profiles.
Bioinformatics 22(14): 1745-1752 (2006) |
25 | EE | Liat Ben-Tovim Jones,
Richard Bean,
Geoffrey J. McLachlan,
Justin Xi Zhu:
Mixture Models for Detecting Differentially Expressed Genes in Microarrays.
Int. J. Neural Syst. 16(5): 353-362 (2006) |
2005 |
24 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan:
Normalized Gaussian Networks with Mixed Feature Data.
Australian Conference on Artificial Intelligence 2005: 879-882 |
23 | EE | Richard Bean,
Geoffrey J. McLachlan:
Cluster Analysis of High-Dimensional Data: A Case Study.
IDEAL 2005: 302-310 |
22 | EE | Liat Ben-Tovim Jones,
Richard Bean,
Geoffrey J. McLachlan,
Justin Xi Zhu:
Application of Mixture Models to Detect Differentially Expressed Genes.
IDEAL 2005: 422-431 |
2004 |
21 | EE | Geoffrey J. McLachlan,
Soong Chang,
Jess Mar,
Christophe Ambroise,
Justin Xi Zhu:
On the Simultaneous Use of Clinical and Microarray Expression Data in the Cluster Analysis of Tissue Samples.
APBC 2004: 167-171 |
20 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan:
Speeding up the EM algorithm for mixture model-based segmentation of magnetic resonance images.
Pattern Recognition 37(8): 1573-1589 (2004) |
2003 |
19 | EE | J. C. Mar,
Geoffrey J. McLachlan:
Model-Based Clustering in Gene Expression Microarrays: An Application to Breast Cancer Data.
APBC 2003: 139-144 |
18 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan:
Robust Estimation in Gaussian Mixtures Using Multiresolution Kd-trees.
DICTA 2003: 145-154 |
17 | EE | Geoffrey J. McLachlan,
David Peel,
Richard Bean:
Modelling high-dimensional data by mixtures of factor analyzers.
Computational Statistics & Data Analysis 41(3-4): 379-388 (2003) |
16 | EE | J. C. Mar,
Geoffrey J. McLachlan:
Model-Based Clustering In Gene Expression Microarrays: An Application To Breast Cancer Data.
International Journal of Software Engineering and Knowledge Engineering 13(6): 579-592 (2003) |
15 | EE | Shu-Kay Ng,
Geoffrey J. McLachlan:
On the choice of the number of blocks with the incremental EM algorithm for the fitting of normal mixtures.
Statistics and Computing 13(1): 45-55 (2003) |
2002 |
14 | | Geoffrey J. McLachlan,
Richard Bean,
David Peel:
A mixture model-based approach to the clustering of microarray expression data.
Bioinformatics 18(3): 413-422 (2002) |
13 | | Igor V. Cadez,
Padhraic Smyth,
Geoffrey J. McLachlan,
Christine E. McLaren:
Maximum Likelihood Estimation of Mixture Densities for Binned and Truncated Multivariate Data.
Machine Learning 47(1): 7-34 (2002) |
2000 |
12 | | Geoffrey J. McLachlan,
David Peel:
Mixtures of Factor Analyzers.
ICML 2000: 599-606 |
1999 |
11 | | Igor V. Cadez,
Christine E. McLaren,
Padhraic Smyth,
Geoffrey J. McLachlan:
Hierarchical Models for Screening of Iron Deficiency Anemia.
ICML 1999: 77-86 |
1998 |
10 | | A. J. Feelders,
Soong Chang,
Geoffrey J. McLachlan:
Mining in the Presence of Selectivity Bias and its Application to Reject Inference.
KDD 1998: 199-203 |
9 | | Geoffrey J. McLachlan,
David Peel:
Robust Cluster Analysis via Mixtures of Multivariate t-Distributions.
SSPR/SPR 1998: 658-666 |
1989 |
8 | EE | Charles R. O. Lawoko,
Geoffrey J. McLachlan:
Bias associated with the discriminant analysis approach to the estimation of mixing proportions.
Pattern Recognition 22(6): 763-766 (1989) |
1988 |
7 | EE | Charles R. O. Lawoko,
Geoffrey J. McLachlan:
Further results on discrimination with autocorrelated observations.
Pattern Recognition 21(1): 69-72 (1988) |
1986 |
6 | EE | Charles R. O. Lawoko,
Geoffrey J. McLachlan:
Asymptotic error rates of the W and Z statistics when the training observations are dependent.
Pattern Recognition 19(6): 467-471 (1986) |
1985 |
5 | EE | Charles R. O. Lawoko,
Geoffrey J. McLachlan:
Discrimination with autocorrelated observations.
Pattern Recognition 18(2): 145-149 (1985) |
1983 |
4 | EE | Charles R. O. Lawoko,
Geoffrey J. McLachlan:
Some asymptotic results on the effect of autocorrelation on the error rates of the sample linear discriminant function.
Pattern Recognition 16(1): 119-121 (1983) |
1980 |
3 | EE | S. Ganesalingam,
Geoffrey J. McLachlan:
Error rate estimation on the basis of posterior probabilities.
Pattern Recognition 12(6): 405-413 (1980) |
1977 |
2 | EE | Geoffrey J. McLachlan:
A note on the choice of a weighting function to give an efficient method for estimating the probability of misclassification.
Pattern Recognition 9(3): 147-149 (1977) |
1976 |
1 | EE | Geoffrey J. McLachlan:
Further results on the effect of intraclass correlation among training samples in discriminant analysis.
Pattern Recognition 8(4): 273-275 (1976) |