2008 |
39 | | Ana L. C. Bazzan,
Mark Craven,
Natália F. Martins:
Advances in Bioinformatics and Computational Biology, Third Brazilian Symposium on Bioinformatics, BSB 2008, Santo André, Brazil, August 28-30, 2008. Proceedings
Springer 2008 |
38 | EE | Burr Settles,
Mark Craven:
An Analysis of Active Learning Strategies for Sequence Labeling Tasks.
EMNLP 2008: 1070-1079 |
37 | EE | Mark Craven:
Learning Expressive Models of Gene Regulation.
ILP 2008: 4 |
36 | EE | Keith Noto,
Mark Craven:
Learning Hidden Markov Models for Regression using Path Aggregation.
UAI 2008: 444-451 |
2007 |
35 | EE | Yue Pan,
Tim Durfee,
Joseph Bockhorst,
Mark Craven:
Connecting quantitative regulatory-network models to the genome.
ISMB/ECCB (Supplement of Bioinformatics) 2007: 367-376 |
34 | EE | Burr Settles,
Mark Craven,
Soumya Ray:
Multiple-Instance Active Learning.
NIPS 2007 |
33 | EE | Keith Noto,
Mark Craven:
Learning probabilistic models of cis-regulatory modules that represent logical and spatial aspects.
Bioinformatics 23(2): 156-162 (2007) |
2006 |
32 | | Tina Eliassi-Rad,
Lyle H. Ungar,
Mark Craven,
Dimitrios Gunopulos:
Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006
ACM 2006 |
31 | EE | Andrew B. Goldberg,
David Andrzejewski,
Jurgen Van Gael,
Burr Settles,
Xiaojin Zhu,
Mark Craven:
Ranking Biomedical Passages for Relevance and Diversity: University of Wisconsin, Madison at TREC Genomics 2006.
TREC 2006 |
2005 |
30 | EE | Soumya Ray,
Mark Craven:
Supervised versus multiple instance learning: an empirical comparison.
ICML 2005: 697-704 |
2004 |
29 | EE | Aaron E. Darling,
Bob Mau,
Mark Craven,
Nicole T. Perna:
Multiple Alignment of Rearranged Genomes.
CSB 2004: 738-739 |
28 | EE | Joseph Bockhorst,
Mark Craven:
Markov Networks for Detecting Overalpping Elements in Sequence Data.
NIPS 2004 |
27 | EE | Keith Noto,
Mark Craven:
Learning Regulatory Network Models that Represent Regulator States and Roles.
Regulatory Genomics 2004: 52-64 |
2003 |
26 | EE | Marios Skounakis,
Mark Craven:
Evidence combination in biomedical natural-language processing.
BIOKDD 2003: 25-32 |
25 | | Marios Skounakis,
Mark Craven,
Soumya Ray:
Hierarchical Hidden Markov Models for Information Extraction.
IJCAI 2003: 427-433 |
24 | EE | Joseph Bockhorst,
Yu Qiu,
Jeremy D. Glasner,
Mingzhu Liu,
Frederick R. Blattner,
Mark Craven:
Predicting bacterial transcription units using sequence and expression data.
ISMB (Supplement of Bioinformatics) 2003: 34-43 |
23 | | Joseph Bockhorst,
Mark Craven,
David Page,
Jude W. Shavlik,
Jeremy D. Glasner:
A Bayesian Network Approach to Operon Prediction.
Bioinformatics 19(10): 1227-1235 (2003) |
22 | EE | David Page,
Mark Craven:
Biological applications of multi-relational data mining.
SIGKDD Explorations 5(1): 69-79 (2003) |
2002 |
21 | | Joseph Bockhorst,
Mark Craven:
Exploiting Relations Among Concepts to Acquire Weakly Labeled Training Data.
ICML 2002: 43-50 |
20 | EE | Mark Craven:
The Genomics of a Signaling Pathway: A KDD Cup Challenge Task.
SIGKDD Explorations 4(2): 97-98 (2002) |
2001 |
19 | | Soumya Ray,
Mark Craven:
Representing Sentence Structure in Hidden Markov Models for Information Extraction.
IJCAI 2001: 1273-1279 |
18 | | Joseph Bockhorst,
Mark Craven:
Refining the Structure of a Stochastic Context-Free Grammar.
IJCAI 2001: 1315-1322 |
17 | | Mark Craven,
Seán Slattery:
Relational Learning with Statistical Predicate Invention: Better Models for Hypertext.
Machine Learning 43(1/2): 97-119 (2001) |
2000 |
16 | | Mark Craven,
David Page,
Jude W. Shavlik,
Joseph Bockhorst,
Jeremy D. Glasner:
Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes.
ICML 2000: 199-206 |
15 | | Mark Craven,
David Page,
Jude W. Shavlik,
Joseph Bockhorst,
Jeremy D. Glasner:
A Probabilistic Learning Approach to Whole-Genome Operon Prediction.
ISMB 2000: 116-127 |
14 | EE | Mark Craven,
Dan DiPasquo,
Dayne Freitag,
Andrew McCallum,
Tom M. Mitchell,
Kamal Nigam,
Seán Slattery:
Learning to construct knowledge bases from the World Wide Web.
Artif. Intell. 118(1-2): 69-113 (2000) |
1999 |
13 | | Mark Craven,
Johan Kumlien:
Constructing Biological Knowledge Bases by Extracting Information from Text Sources.
ISMB 1999: 77-86 |
1998 |
12 | | Mark Craven,
Dan DiPasquo,
Dayne Freitag,
Andrew McCallum,
Tom M. Mitchell,
Kamal Nigam,
Seán Slattery:
Learning to Extract Symbolic Knowledge from the World Wide Web.
AAAI/IAAI 1998: 509-516 |
11 | | Mark Craven,
Seán Slattery,
Kamal Nigam:
First-Order Learning for Web Mining.
ECML 1998: 250-255 |
10 | | Seán Slattery,
Mark Craven:
Combining Statistical and Relational Methods for Learning in Hypertext Domains.
ILP 1998: 38-52 |
1997 |
9 | EE | Mark Craven,
Jude W. Shavlik:
Understanding Time-Series Networks: A Case Study in Rule Extraction.
Int. J. Neural Syst. 8(4): 373-384 (1997) |
1995 |
8 | | Mark Craven,
Richard J. Mural,
Loren J. Hauser,
Edward C. Uberbacher:
Predicting Protein Folding Classes without Overly Relying on Homology.
ISMB 1995: 98-106 |
7 | EE | Mark Craven,
Jude W. Shavlik:
Extracting Tree-Structured Representations of Trained Networks.
NIPS 1995: 24-30 |
6 | EE | Jeffrey C. Jackson,
Mark Craven:
Learning Sparse Perceptrons.
NIPS 1995: 654-660 |
1994 |
5 | | Mark Craven,
Jude W. Shavlik:
Using Sampling and Queries to Extract Rules from Trained Neural Networks.
ICML 1994: 37-45 |
4 | EE | Mark Craven,
Jude W. Shavlik:
Machine Learning Approaches to Gene Recognition.
IEEE Expert 9(2): 2-10 (1994) |
1993 |
3 | | Mark Craven,
Jude W. Shavlik:
Learning Symbolic Rules Using Artificial Neural Networks.
ICML 1993: 73-80 |
2 | | Mark Craven,
Jude W. Shavlik:
Learning to Represent Codons: A Challenge Problem for Constructive Induction.
IJCAI 1993: 1319-1324 |
1991 |
1 | | Geoffrey G. Towell,
Mark Craven,
Jude W. Shavlik:
Constructive Induction in Knowledge-Based Neural Networks.
ML 1991: 213-217 |