2008 |
87 | | David A. Forsyth,
Philip H. S. Torr,
Andrew Zisserman:
Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I
Springer 2008 |
86 | | David A. Forsyth,
Philip H. S. Torr,
Andrew Zisserman:
Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part II
Springer 2008 |
85 | | David A. Forsyth,
Philip H. S. Torr,
Andrew Zisserman:
Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part III
Springer 2008 |
84 | | David A. Forsyth,
Philip H. S. Torr,
Andrew Zisserman:
Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part IV
Springer 2008 |
83 | EE | Srikumar Ramalingam,
Pushmeet Kohli,
Karteek Alahari,
Philip H. S. Torr:
Exact inference in multi-label CRFs with higher order cliques.
CVPR 2008 |
82 | EE | Oliver J. Woodford,
Philip H. S. Torr,
Ian D. Reid,
Andrew W. Fitzgibbon:
Global stereo reconstruction under second order smoothness priors.
CVPR 2008 |
81 | EE | Grégory Rogez,
Jonathan Rihan,
Srikumar Ramalingam,
Carlos Orrite,
Philip H. S. Torr:
Randomized trees for human pose detection.
CVPR 2008 |
80 | EE | Karteek Alahari,
Pushmeet Kohli,
Philip H. S. Torr:
Reduce, reuse & recycle: Efficiently solving multi-label MRFs.
CVPR 2008 |
79 | EE | Pushmeet Kohli,
Lubor Ladicky,
Philip H. S. Torr:
Robust higher order potentials for enforcing label consistency.
CVPR 2008 |
78 | EE | Yogarajah Pratheepan,
Philip H. S. Torr,
Joan V. Condell,
Girijesh Prasad:
Body Language Based Individual Identification in Video Using Gait and Actions.
ICISP 2008: 368-377 |
77 | EE | Pushmeet Kohli,
Alexander Shekhovtsov,
Carsten Rother,
Vladimir Kolmogorov,
Philip H. S. Torr:
On partial optimality in multi-label MRFs.
ICML 2008: 480-487 |
76 | EE | M. Pawan Kumar,
Philip H. S. Torr:
Efficiently solving convex relaxations for MAP estimation.
ICML 2008: 680-687 |
75 | EE | Carl Henrik Ek,
Jonathan Rihan,
Philip H. S. Torr,
Grégory Rogez,
Neil D. Lawrence:
Ambiguity Modeling in Latent Spaces.
MLMI 2008: 62-73 |
74 | EE | M. Pawan Kumar,
Philip H. S. Torr:
Improved Moves for Truncated Convex Models.
NIPS 2008: 889-896 |
73 | EE | Pushmeet Kohli,
Philip H. S. Torr:
Measuring uncertainty in graph cut solutions.
Computer Vision and Image Understanding 112(1): 30-38 (2008) |
72 | EE | George Vogiatzis,
Philip H. S. Torr,
Steven M. Seitz,
Roberto Cipolla:
Reconstructing relief surfaces.
Image Vision Comput. 26(3): 397-404 (2008) |
71 | EE | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
Learning Layered Motion Segmentations of Video.
International Journal of Computer Vision 76(3): 301-319 (2008) |
70 | EE | Pushmeet Kohli,
Jonathan Rihan,
Matthieu Bray,
Philip H. S. Torr:
Simultaneous Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts.
International Journal of Computer Vision 79(3): 285-298 (2008) |
69 | EE | Arasanathan Thayananthan,
Ramanan Navaratnam,
Björn Stenger,
Philip H. S. Torr,
Roberto Cipolla:
Pose estimation and tracking using multivariate regression.
Pattern Recognition Letters 29(9): 1302-1310 (2008) |
2007 |
68 | EE | Pushmeet Kohli,
M. Pawan Kumar,
Philip H. S. Torr:
P3 & Beyond: Solving Energies with Higher Order Cliques.
CVPR 2007 |
67 | EE | Anton van den Hengel,
Anthony R. Dick,
Thorsten Thormählen,
Ben Ward,
Philip H. S. Torr:
Interactive 3D Model Completion.
DICTA 2007: 175-181 |
66 | EE | Anton van den Hengel,
Anthony R. Dick,
Thorsten Thormählen,
Ben Ward,
Philip H. S. Torr:
A shape hierarchy for 3D modelling from video.
GRAPHITE 2007: 63-70 |
65 | EE | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
An Invariant Large Margin Nearest Neighbour Classifier.
ICCV 2007: 1-8 |
64 | EE | Christopher Russell,
Dimitris N. Metaxas,
Christophe Restif,
Philip H. S. Torr:
Using the Pn Potts model with learning methods to segment live cell images.
ICCV 2007: 1-8 |
63 | EE | Carl Henrik Ek,
Philip H. S. Torr,
Neil D. Lawrence:
Gaussian Process Latent Variable Models for Human Pose Estimation.
MLMI 2007: 132-143 |
62 | EE | Pawan Mudigonda,
Vladimir Kolmogorov,
Philip H. S. Torr:
An Analysis of Convex Relaxations for MAP Estimation.
NIPS 2007 |
61 | EE | Anton van den Hengel,
Anthony R. Dick,
Thorsten Thormählen,
Ben Ward,
Philip H. S. Torr:
VideoTrace: rapid interactive scene modelling from video.
ACM Trans. Graph. 26(3): 86 (2007) |
60 | EE | Pushmeet Kohli,
Philip H. S. Torr:
Dynamic Graph Cuts for Efficient Inference in Markov Random Fields.
IEEE Trans. Pattern Anal. Mach. Intell. 29(12): 2079-2088 (2007) |
59 | EE | George Vogiatzis,
Carlos Hernández Esteban,
Philip H. S. Torr,
Roberto Cipolla:
Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency.
IEEE Trans. Pattern Anal. Mach. Intell. 29(12): 2241-2246 (2007) |
58 | EE | Björn Stenger,
Arasanathan Thayananthan,
Philip H. S. Torr,
Roberto Cipolla:
Estimating 3D hand pose using hierarchical multi-label classification.
Image Vision Comput. 25(12): 1885-1894 (2007) |
57 | EE | Antonio Criminisi,
Andrew Blake,
Carsten Rother,
Jamie Shotton,
Philip H. S. Torr:
Efficient Dense Stereo with Occlusions for New View-Synthesis by Four-State Dynamic Programming.
International Journal of Computer Vision 71(1): 89-110 (2007) |
2006 |
56 | EE | Anton van den Hengel,
Anthony R. Dick,
Thorsten Thormählen,
Ben Ward,
Philip H. S. Torr:
Hierarchical Model Fitting to 2D and 3D Data.
CGIV 2006: 359-364 |
55 | EE | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
Solving Markov Random Fields using Second Order Cone Programming Relaxations.
CVPR (1) 2006: 1045-1052 |
54 | EE | Pushmeet Kohli,
Philip H. S. Torr:
Measuring Uncertainty in Graph Cut Solutions - Efficiently Computing Min-marginal Energies Using Dynamic Graph Cuts.
ECCV (2) 2006: 30-43 |
53 | EE | Matthieu Bray,
Pushmeet Kohli,
Philip H. S. Torr:
PoseCut: Simultaneous Segmentation and 3D Pose Estimation of Humans Using Dynamic Graph-Cuts.
ECCV (2) 2006: 642-655 |
52 | EE | Arasanathan Thayananthan,
Ramanan Navaratnam,
Björn Stenger,
Philip H. S. Torr,
Roberto Cipolla:
Multivariate Relevance Vector Machines for Tracking.
ECCV (3) 2006: 124-138 |
51 | EE | M. Pawan Kumar,
Philip H. S. Torr:
Fast Memory-Efficient Generalized Belief Propagation.
ECCV (4) 2006: 451-463 |
50 | EE | Jonathan Rihan,
Pushmeet Kohli,
Philip H. S. Torr:
OBJCUT for Face Detection.
ICVGIP 2006: 576-584 |
49 | EE | Yunda Sun,
Pushmeet Kohli,
Matthieu Bray,
Philip H. S. Torr:
Using Strong Shape Priors for Stereo.
ICVGIP 2006: 882-893 |
48 | EE | Mukta Prasad,
Andrew Zisserman,
Andrew W. Fitzgibbon,
M. Pawan Kumar,
Philip H. S. Torr:
Learning Class-Specific Edges for Object Detection and Segmentation.
ICVGIP 2006: 94-105 |
47 | EE | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
An Object Category Specific mrffor Segmentation.
Toward Category-Level Object Recognition 2006: 596-616 |
46 | EE | Björn Stenger,
Arasanathan Thayananthan,
Philip H. S. Torr,
Roberto Cipolla:
Model-Based Hand Tracking Using a Hierarchical Bayesian Filter.
IEEE Trans. Pattern Anal. Mach. Intell. 28(9): 1372-1384 (2006) |
2005 |
45 | EE | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
OBJ CUT.
CVPR (1) 2005: 18-25 |
44 | EE | George Vogiatzis,
Philip H. S. Torr,
Roberto Cipolla:
Multi-View Stereo via Volumetric Graph-Cuts.
CVPR (2) 2005: 391-398 |
43 | EE | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
Learning Layered Motion Segmentation of Video.
ICCV 2005: 33-40 |
42 | EE | Pushmeet Kohli,
Philip H. S. Torr:
Effciently Solving Dynamic Markov Random Fields Using Graph Cuts.
ICCV 2005: 922-929 |
2004 |
41 | EE | Andrew Blake,
Carsten Rother,
M. Brown,
Patrick Pérez,
Philip H. S. Torr:
Interactive Image Segmentation Using an Adaptive GMMRF Model.
ECCV (1) 2004: 428-441 |
40 | EE | Bjoern Stenger,
Arasanathan Thayananthan,
Philip H. S. Torr,
Roberto Cipolla:
Hand Pose Estimation Using Hierarchical Detection.
ECCV Workshop on HCI 2004: 105-116 |
39 | | M. Pawan Kumar,
Philip H. S. Torr,
Andrew Zisserman:
Learning Layered Pictorial Structures from Video.
ICVGIP 2004: 158-164 |
38 | EE | Philip H. S. Torr,
Andrew W. Fitzgibbon:
Invariant Fitting of Two View Geometry.
IEEE Trans. Pattern Anal. Mach. Intell. 26(5): 648-650 (2004) |
37 | EE | Philip H. S. Torr,
Antonio Criminisi:
Dense stereo using pivoted dynamic programming.
Image Vision Comput. 22(10): 795-806 (2004) |
36 | EE | Anthony R. Dick,
Philip H. S. Torr,
Roberto Cipolla:
Modelling and Interpretation of Architecture from Several Images.
International Journal of Computer Vision 60(2): 111-134 (2004) |
2003 |
35 | EE | Roberto Cipolla,
Bjoern Stenger,
Arasanathan Thayananthan,
Philip H. S. Torr:
Template-Based Hand Detection and Tracking.
Advanced Studies in Biometrics 2003: 114-125 |
34 | EE | Arasanathan Thayananthan,
Bjoern Stenger,
Philip H. S. Torr,
Roberto Cipolla:
Shape Context and Chamfer Matching in Cluttered Scenes.
CVPR (1) 2003: 127-133 |
33 | EE | Bjoern Stenger,
Arasanathan Thayananthan,
Philip H. S. Torr,
Roberto Cipolla:
Filtering Using a Tree-Based Estimator.
ICCV 2003: 1063-1070 |
32 | EE | Antonio Criminisi,
Jamie Shotton,
Andrew Blake,
Philip H. S. Torr:
Gaze Manipulation for One-to-one Teleconferencing.
ICCV 2003: 191-198 |
31 | EE | Philip H. S. Torr,
Colin Davidson:
IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus.
IEEE Trans. Pattern Anal. Mach. Intell. 25(3): 354-364 (2003) |
2002 |
30 | EE | Philip H. S. Torr,
Antonio Criminisi:
Dense Stereo Using Pivoted Dynamic.
BMVC 2002 |
29 | EE | D. R. Myatt,
Philip H. S. Torr,
Slawomir J. Nasuto,
J. Mark Bishop,
R. Craddock:
NAPSAC: High Noise, High Dimensional Robust Estimation - it's in the Bag.
BMVC 2002 |
28 | EE | Anthony R. Dick,
Philip H. S. Torr,
Roberto Cipolla:
A Bayesian Estimation of Building Shape Using MCMC.
ECCV (2) 2002: 852-866 |
27 | | Philip H. S. Torr:
Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting.
International Journal of Computer Vision 50(1): 35-61 (2002) |
2001 |
26 | | Anthony R. Dick,
Philip H. S. Torr,
Simon J. Ruffle,
Roberto Cipolla:
Combining Single View Recognition and Multiple View Stereo for Architectural Scenes.
ICCV 2001: 268-274 |
25 | | Sami Romdhani,
Philip H. S. Torr,
Bernhard Schölkopf,
Andrew Blake:
Computationally Efficient Face Detection.
ICCV 2001: 695-700 |
24 | EE | Philip H. S. Torr,
Richard Szeliski,
P. Anandan:
An Integrated Bayesian Approach to Layer Extraction from Image Sequences.
IEEE Trans. Pattern Anal. Mach. Intell. 23(3): 297-303 (2001) |
2000 |
23 | EE | Anthony R. Dick,
Philip H. S. Torr,
Roberto Cipolla:
Automatic 3D Modelling of Architecture.
BMVC 2000 |
22 | EE | Frederik Schaffalitzky,
Andrew Zisserman,
Richard I. Hartley,
Philip H. S. Torr:
A Six Point Solution for Structure and Motion.
ECCV (1) 2000: 632-648 |
21 | EE | Philip H. S. Torr,
Anthony R. Dick,
Roberto Cipolla:
Layer Extraction with a Bayesian Model of Shapes.
ECCV (2) 2000: 273-289 |
20 | EE | Philip H. S. Torr,
Colin Davidson:
IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus.
ECCV (2) 2000: 819-833 |
19 | EE | Philip H. S. Torr,
Andrew Zisserman:
MLESAC: A New Robust Estimator with Application to Estimating Image Geometry.
Computer Vision and Image Understanding 78(1): 138-156 (2000) |
1999 |
18 | EE | Philip H. S. Torr,
Richard Szeliski,
P. Anandan:
An Integrated Bayesian Approach to Layer Extraction from Image Sequences.
ICCV 1999: 983-990 |
17 | EE | Philip H. S. Torr:
Model Selection for Two View Geometry: A Review.
Shape, Contour and Grouping in Computer Vision 1999: 277-301 |
16 | EE | Philip H. S. Torr,
Andrew Zisserman:
Feature Based Methods for Structure and Motion Estimation.
Workshop on Vision Algorithms 1999: 278-294 |
15 | EE | Philip H. S. Torr,
Andrew W. Fitzgibbon,
Andrew Zisserman:
The Problem of Degeneracy in Structure and Motion Recovery from Uncalibrated Image Sequences.
International Journal of Computer Vision 32(1): 27-44 (1999) |
1998 |
14 | EE | Philip H. S. Torr,
Andrew Zisserman:
Concerning Bayesian Motion Segmentation, Model, Averaging, Matching and the Trifocal Tensor.
ECCV (1) 1998: 511-527 |
13 | | Philip H. S. Torr,
Andrew W. Fitzgibbon,
Andrew Zisserman:
Maintaining Multiple Motion Model Hypotheses Through Many Views to Recover Matching and Structure.
ICCV 1998: 485-491 |
12 | | Philip H. S. Torr,
Andrew Zisserman:
Robust Computation and Parametrization of Multiple View Relations.
ICCV 1998: 727-732 |
11 | EE | Richard Szeliski,
Philip H. S. Torr:
Geometrically Constrained Structure from Motion: Points on Planes.
SMILE 1998: 171-186 |
10 | EE | Philip H. S. Torr,
Andrew Zisserman,
Stephen J. Maybank:
Robust Detection of Degenerate Configurations while Estimating the Fundamental Matrix.
Computer Vision and Image Understanding 71(3): 312-333 (1998) |
1997 |
9 | EE | Philip H. S. Torr:
An Assessment of Information Criteria for Motion Model Selection.
CVPR 1997: 47-52 |
8 | EE | Philip H. S. Torr,
Andrew Zisserman:
Robust parameterization and computation of the trifocal tensor.
Image Vision Comput. 15(8): 591-605 (1997) |
7 | EE | Philip H. S. Torr,
David W. Murray:
The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix.
International Journal of Computer Vision 24(3): 271-300 (1997) |
6 | EE | Philip H. S. Torr,
Andrew Zisserman:
Performance characterization of fundamental matrix estimation under image degradation.
Mach. Vis. Appl. 9(5/6): 321-333 (1997) |
1996 |
5 | EE | Philip H. S. Torr,
Andrew Zisserman:
Robust Parameterization and Computation of the Trifocal Tensor.
BMVC 1996 |
4 | | Paul A. Beardsley,
Philip H. S. Torr,
Andrew Zisserman:
3D Model Acquisition from Extended Image Sequences.
ECCV (2) 1996: 683-695 |
1995 |
3 | EE | Philip H. S. Torr,
Andrew Zisserman,
Stephen J. Maybank:
Robust Detection of Degenerate Configurations for the Fundamental Matrix.
ICCV 1995: 1037- |
1994 |
2 | | Philip H. S. Torr,
David W. Murray:
Stochastic Motion Clustering.
ECCV (2) 1994: 328-337 |
1993 |
1 | EE | Philip H. S. Torr,
David W. Murray:
Statistical detection of independent movement from a moving camera.
Image Vision Comput. 11(4): 180-187 (1993) |