2008 | ||
---|---|---|
87 | David A. Forsyth, Philip H. S. Torr, Andrew Zisserman: Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I Springer 2008 | |
86 | David A. Forsyth, Philip H. S. Torr, Andrew Zisserman: Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part II Springer 2008 | |
85 | David A. Forsyth, Philip H. S. Torr, Andrew Zisserman: Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part III Springer 2008 | |
84 | David A. Forsyth, Philip H. S. Torr, Andrew Zisserman: Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part IV Springer 2008 | |
83 | EE | Srikumar Ramalingam, Pushmeet Kohli, Karteek Alahari, Philip H. S. Torr: Exact inference in multi-label CRFs with higher order cliques. CVPR 2008 |
82 | EE | Oliver J. Woodford, Philip H. S. Torr, Ian D. Reid, Andrew W. Fitzgibbon: Global stereo reconstruction under second order smoothness priors. CVPR 2008 |
81 | EE | Grégory Rogez, Jonathan Rihan, Srikumar Ramalingam, Carlos Orrite, Philip H. S. Torr: Randomized trees for human pose detection. CVPR 2008 |
80 | EE | Karteek Alahari, Pushmeet Kohli, Philip H. S. Torr: Reduce, reuse & recycle: Efficiently solving multi-label MRFs. CVPR 2008 |
79 | EE | Pushmeet Kohli, Lubor Ladicky, Philip H. S. Torr: Robust higher order potentials for enforcing label consistency. CVPR 2008 |
78 | EE | Yogarajah Pratheepan, Philip H. S. Torr, Joan V. Condell, Girijesh Prasad: Body Language Based Individual Identification in Video Using Gait and Actions. ICISP 2008: 368-377 |
77 | EE | Pushmeet Kohli, Alexander Shekhovtsov, Carsten Rother, Vladimir Kolmogorov, Philip H. S. Torr: On partial optimality in multi-label MRFs. ICML 2008: 480-487 |
76 | EE | M. Pawan Kumar, Philip H. S. Torr: Efficiently solving convex relaxations for MAP estimation. ICML 2008: 680-687 |
75 | EE | Carl Henrik Ek, Jonathan Rihan, Philip H. S. Torr, Grégory Rogez, Neil D. Lawrence: Ambiguity Modeling in Latent Spaces. MLMI 2008: 62-73 |
74 | EE | M. Pawan Kumar, Philip H. S. Torr: Improved Moves for Truncated Convex Models. NIPS 2008: 889-896 |
73 | EE | Pushmeet Kohli, Philip H. S. Torr: Measuring uncertainty in graph cut solutions. Computer Vision and Image Understanding 112(1): 30-38 (2008) |
72 | EE | George Vogiatzis, Philip H. S. Torr, Steven M. Seitz, Roberto Cipolla: Reconstructing relief surfaces. Image Vision Comput. 26(3): 397-404 (2008) |
71 | EE | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: Learning Layered Motion Segmentations of Video. International Journal of Computer Vision 76(3): 301-319 (2008) |
70 | EE | Pushmeet Kohli, Jonathan Rihan, Matthieu Bray, Philip H. S. Torr: Simultaneous Segmentation and Pose Estimation of Humans Using Dynamic Graph Cuts. International Journal of Computer Vision 79(3): 285-298 (2008) |
69 | EE | Arasanathan Thayananthan, Ramanan Navaratnam, Björn Stenger, Philip H. S. Torr, Roberto Cipolla: Pose estimation and tracking using multivariate regression. Pattern Recognition Letters 29(9): 1302-1310 (2008) |
2007 | ||
68 | EE | Pushmeet Kohli, M. Pawan Kumar, Philip H. S. Torr: P3 & Beyond: Solving Energies with Higher Order Cliques. CVPR 2007 |
67 | EE | Anton van den Hengel, Anthony R. Dick, Thorsten Thormählen, Ben Ward, Philip H. S. Torr: Interactive 3D Model Completion. DICTA 2007: 175-181 |
66 | EE | Anton van den Hengel, Anthony R. Dick, Thorsten Thormählen, Ben Ward, Philip H. S. Torr: A shape hierarchy for 3D modelling from video. GRAPHITE 2007: 63-70 |
65 | EE | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: An Invariant Large Margin Nearest Neighbour Classifier. ICCV 2007: 1-8 |
64 | EE | Christopher Russell, Dimitris N. Metaxas, Christophe Restif, Philip H. S. Torr: Using the Pn Potts model with learning methods to segment live cell images. ICCV 2007: 1-8 |
63 | EE | Carl Henrik Ek, Philip H. S. Torr, Neil D. Lawrence: Gaussian Process Latent Variable Models for Human Pose Estimation. MLMI 2007: 132-143 |
62 | EE | Pawan Mudigonda, Vladimir Kolmogorov, Philip H. S. Torr: An Analysis of Convex Relaxations for MAP Estimation. NIPS 2007 |
61 | EE | Anton van den Hengel, Anthony R. Dick, Thorsten Thormählen, Ben Ward, Philip H. S. Torr: VideoTrace: rapid interactive scene modelling from video. ACM Trans. Graph. 26(3): 86 (2007) |
60 | EE | Pushmeet Kohli, Philip H. S. Torr: Dynamic Graph Cuts for Efficient Inference in Markov Random Fields. IEEE Trans. Pattern Anal. Mach. Intell. 29(12): 2079-2088 (2007) |
59 | EE | George Vogiatzis, Carlos Hernández Esteban, Philip H. S. Torr, Roberto Cipolla: Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency. IEEE Trans. Pattern Anal. Mach. Intell. 29(12): 2241-2246 (2007) |
58 | EE | Björn Stenger, Arasanathan Thayananthan, Philip H. S. Torr, Roberto Cipolla: Estimating 3D hand pose using hierarchical multi-label classification. Image Vision Comput. 25(12): 1885-1894 (2007) |
57 | EE | Antonio Criminisi, Andrew Blake, Carsten Rother, Jamie Shotton, Philip H. S. Torr: Efficient Dense Stereo with Occlusions for New View-Synthesis by Four-State Dynamic Programming. International Journal of Computer Vision 71(1): 89-110 (2007) |
2006 | ||
56 | EE | Anton van den Hengel, Anthony R. Dick, Thorsten Thormählen, Ben Ward, Philip H. S. Torr: Hierarchical Model Fitting to 2D and 3D Data. CGIV 2006: 359-364 |
55 | EE | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: Solving Markov Random Fields using Second Order Cone Programming Relaxations. CVPR (1) 2006: 1045-1052 |
54 | EE | Pushmeet Kohli, Philip H. S. Torr: Measuring Uncertainty in Graph Cut Solutions - Efficiently Computing Min-marginal Energies Using Dynamic Graph Cuts. ECCV (2) 2006: 30-43 |
53 | EE | Matthieu Bray, Pushmeet Kohli, Philip H. S. Torr: PoseCut: Simultaneous Segmentation and 3D Pose Estimation of Humans Using Dynamic Graph-Cuts. ECCV (2) 2006: 642-655 |
52 | EE | Arasanathan Thayananthan, Ramanan Navaratnam, Björn Stenger, Philip H. S. Torr, Roberto Cipolla: Multivariate Relevance Vector Machines for Tracking. ECCV (3) 2006: 124-138 |
51 | EE | M. Pawan Kumar, Philip H. S. Torr: Fast Memory-Efficient Generalized Belief Propagation. ECCV (4) 2006: 451-463 |
50 | EE | Jonathan Rihan, Pushmeet Kohli, Philip H. S. Torr: OBJCUT for Face Detection. ICVGIP 2006: 576-584 |
49 | EE | Yunda Sun, Pushmeet Kohli, Matthieu Bray, Philip H. S. Torr: Using Strong Shape Priors for Stereo. ICVGIP 2006: 882-893 |
48 | EE | Mukta Prasad, Andrew Zisserman, Andrew W. Fitzgibbon, M. Pawan Kumar, Philip H. S. Torr: Learning Class-Specific Edges for Object Detection and Segmentation. ICVGIP 2006: 94-105 |
47 | EE | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: An Object Category Specific mrffor Segmentation. Toward Category-Level Object Recognition 2006: 596-616 |
46 | EE | Björn Stenger, Arasanathan Thayananthan, Philip H. S. Torr, Roberto Cipolla: Model-Based Hand Tracking Using a Hierarchical Bayesian Filter. IEEE Trans. Pattern Anal. Mach. Intell. 28(9): 1372-1384 (2006) |
2005 | ||
45 | EE | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: OBJ CUT. CVPR (1) 2005: 18-25 |
44 | EE | George Vogiatzis, Philip H. S. Torr, Roberto Cipolla: Multi-View Stereo via Volumetric Graph-Cuts. CVPR (2) 2005: 391-398 |
43 | EE | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: Learning Layered Motion Segmentation of Video. ICCV 2005: 33-40 |
42 | EE | Pushmeet Kohli, Philip H. S. Torr: Effciently Solving Dynamic Markov Random Fields Using Graph Cuts. ICCV 2005: 922-929 |
2004 | ||
41 | EE | Andrew Blake, Carsten Rother, M. Brown, Patrick Pérez, Philip H. S. Torr: Interactive Image Segmentation Using an Adaptive GMMRF Model. ECCV (1) 2004: 428-441 |
40 | EE | Bjoern Stenger, Arasanathan Thayananthan, Philip H. S. Torr, Roberto Cipolla: Hand Pose Estimation Using Hierarchical Detection. ECCV Workshop on HCI 2004: 105-116 |
39 | M. Pawan Kumar, Philip H. S. Torr, Andrew Zisserman: Learning Layered Pictorial Structures from Video. ICVGIP 2004: 158-164 | |
38 | EE | Philip H. S. Torr, Andrew W. Fitzgibbon: Invariant Fitting of Two View Geometry. IEEE Trans. Pattern Anal. Mach. Intell. 26(5): 648-650 (2004) |
37 | EE | Philip H. S. Torr, Antonio Criminisi: Dense stereo using pivoted dynamic programming. Image Vision Comput. 22(10): 795-806 (2004) |
36 | EE | Anthony R. Dick, Philip H. S. Torr, Roberto Cipolla: Modelling and Interpretation of Architecture from Several Images. International Journal of Computer Vision 60(2): 111-134 (2004) |
2003 | ||
35 | EE | Roberto Cipolla, Bjoern Stenger, Arasanathan Thayananthan, Philip H. S. Torr: Template-Based Hand Detection and Tracking. Advanced Studies in Biometrics 2003: 114-125 |
34 | EE | Arasanathan Thayananthan, Bjoern Stenger, Philip H. S. Torr, Roberto Cipolla: Shape Context and Chamfer Matching in Cluttered Scenes. CVPR (1) 2003: 127-133 |
33 | EE | Bjoern Stenger, Arasanathan Thayananthan, Philip H. S. Torr, Roberto Cipolla: Filtering Using a Tree-Based Estimator. ICCV 2003: 1063-1070 |
32 | EE | Antonio Criminisi, Jamie Shotton, Andrew Blake, Philip H. S. Torr: Gaze Manipulation for One-to-one Teleconferencing. ICCV 2003: 191-198 |
31 | EE | Philip H. S. Torr, Colin Davidson: IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus. IEEE Trans. Pattern Anal. Mach. Intell. 25(3): 354-364 (2003) |
2002 | ||
30 | EE | Philip H. S. Torr, Antonio Criminisi: Dense Stereo Using Pivoted Dynamic. BMVC 2002 |
29 | EE | D. R. Myatt, Philip H. S. Torr, Slawomir J. Nasuto, J. Mark Bishop, R. Craddock: NAPSAC: High Noise, High Dimensional Robust Estimation - it's in the Bag. BMVC 2002 |
28 | EE | Anthony R. Dick, Philip H. S. Torr, Roberto Cipolla: A Bayesian Estimation of Building Shape Using MCMC. ECCV (2) 2002: 852-866 |
27 | Philip H. S. Torr: Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting. International Journal of Computer Vision 50(1): 35-61 (2002) | |
2001 | ||
26 | Anthony R. Dick, Philip H. S. Torr, Simon J. Ruffle, Roberto Cipolla: Combining Single View Recognition and Multiple View Stereo for Architectural Scenes. ICCV 2001: 268-274 | |
25 | Sami Romdhani, Philip H. S. Torr, Bernhard Schölkopf, Andrew Blake: Computationally Efficient Face Detection. ICCV 2001: 695-700 | |
24 | EE | Philip H. S. Torr, Richard Szeliski, P. Anandan: An Integrated Bayesian Approach to Layer Extraction from Image Sequences. IEEE Trans. Pattern Anal. Mach. Intell. 23(3): 297-303 (2001) |
2000 | ||
23 | EE | Anthony R. Dick, Philip H. S. Torr, Roberto Cipolla: Automatic 3D Modelling of Architecture. BMVC 2000 |
22 | EE | Frederik Schaffalitzky, Andrew Zisserman, Richard I. Hartley, Philip H. S. Torr: A Six Point Solution for Structure and Motion. ECCV (1) 2000: 632-648 |
21 | EE | Philip H. S. Torr, Anthony R. Dick, Roberto Cipolla: Layer Extraction with a Bayesian Model of Shapes. ECCV (2) 2000: 273-289 |
20 | EE | Philip H. S. Torr, Colin Davidson: IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus. ECCV (2) 2000: 819-833 |
19 | EE | Philip H. S. Torr, Andrew Zisserman: MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Computer Vision and Image Understanding 78(1): 138-156 (2000) |
1999 | ||
18 | EE | Philip H. S. Torr, Richard Szeliski, P. Anandan: An Integrated Bayesian Approach to Layer Extraction from Image Sequences. ICCV 1999: 983-990 |
17 | EE | Philip H. S. Torr: Model Selection for Two View Geometry: A Review. Shape, Contour and Grouping in Computer Vision 1999: 277-301 |
16 | EE | Philip H. S. Torr, Andrew Zisserman: Feature Based Methods for Structure and Motion Estimation. Workshop on Vision Algorithms 1999: 278-294 |
15 | EE | Philip H. S. Torr, Andrew W. Fitzgibbon, Andrew Zisserman: The Problem of Degeneracy in Structure and Motion Recovery from Uncalibrated Image Sequences. International Journal of Computer Vision 32(1): 27-44 (1999) |
1998 | ||
14 | EE | Philip H. S. Torr, Andrew Zisserman: Concerning Bayesian Motion Segmentation, Model, Averaging, Matching and the Trifocal Tensor. ECCV (1) 1998: 511-527 |
13 | Philip H. S. Torr, Andrew W. Fitzgibbon, Andrew Zisserman: Maintaining Multiple Motion Model Hypotheses Through Many Views to Recover Matching and Structure. ICCV 1998: 485-491 | |
12 | Philip H. S. Torr, Andrew Zisserman: Robust Computation and Parametrization of Multiple View Relations. ICCV 1998: 727-732 | |
11 | EE | Richard Szeliski, Philip H. S. Torr: Geometrically Constrained Structure from Motion: Points on Planes. SMILE 1998: 171-186 |
10 | EE | Philip H. S. Torr, Andrew Zisserman, Stephen J. Maybank: Robust Detection of Degenerate Configurations while Estimating the Fundamental Matrix. Computer Vision and Image Understanding 71(3): 312-333 (1998) |
1997 | ||
9 | EE | Philip H. S. Torr: An Assessment of Information Criteria for Motion Model Selection. CVPR 1997: 47-52 |
8 | EE | Philip H. S. Torr, Andrew Zisserman: Robust parameterization and computation of the trifocal tensor. Image Vision Comput. 15(8): 591-605 (1997) |
7 | EE | Philip H. S. Torr, David W. Murray: The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix. International Journal of Computer Vision 24(3): 271-300 (1997) |
6 | EE | Philip H. S. Torr, Andrew Zisserman: Performance characterization of fundamental matrix estimation under image degradation. Mach. Vis. Appl. 9(5/6): 321-333 (1997) |
1996 | ||
5 | EE | Philip H. S. Torr, Andrew Zisserman: Robust Parameterization and Computation of the Trifocal Tensor. BMVC 1996 |
4 | Paul A. Beardsley, Philip H. S. Torr, Andrew Zisserman: 3D Model Acquisition from Extended Image Sequences. ECCV (2) 1996: 683-695 | |
1995 | ||
3 | EE | Philip H. S. Torr, Andrew Zisserman, Stephen J. Maybank: Robust Detection of Degenerate Configurations for the Fundamental Matrix. ICCV 1995: 1037- |
1994 | ||
2 | Philip H. S. Torr, David W. Murray: Stochastic Motion Clustering. ECCV (2) 1994: 328-337 | |
1993 | ||
1 | EE | Philip H. S. Torr, David W. Murray: Statistical detection of independent movement from a moving camera. Image Vision Comput. 11(4): 180-187 (1993) |