| 2008 |
| 20 | EE | Yang Zhang,
HongYu Li,
Mahesan Niranjan,
Peter Rockett:
Applying Cost-Sensitive Multiobjective Genetic Programming to Feature Extraction for Spam E-mail Filtering.
EuroGP 2008: 325-336 |
| 19 | EE | Renata da Silva Camargo,
Mahesan Niranjan:
Mining Protein Database using Machine Learning Techniques.
J. Integrative Bioinformatics 5(2): (2008) |
| 18 | EE | Sujimarn Suwannaroj,
Mahesan Niranjan:
Enhancing Automatic Construction of Gene Subnetworks by Integrating Multiple Sources of Information.
Signal Processing Systems 50(3): 331-340 (2008) |
| 2005 |
| 17 | | Joab Winkler,
Mahesan Niranjan,
Neil D. Lawrence:
Deterministic and Statistical Methods in Machine Learning, First International Workshop, Sheffield, UK, September 7-10, 2004, Revised Lectures
Springer 2005 |
| 2004 |
| 16 | EE | Neil D. Lawrence,
Marta Milo,
Mahesan Niranjan,
Penny Rashbass,
Stephan Soullier:
Reducing the variability in cDNA microarray image processing by Bayesian inference.
Bioinformatics 20(4): (2004) |
| 2003 |
| 15 | EE | Si Wu,
Danmei Chen,
Mahesan Niranjan,
Shun-ichi Amari:
Sequential Bayesian Decoding with a Population of Neurons.
Neural Computation 15(5): 993-1012 (2003) |
| 2001 |
| 14 | EE | Gaafar M. K. Saleh,
Mahesan Niranjan:
Speech enhancement using a Bayesian evidence approach.
Computer Speech & Language 15(2): 101-125 (2001) |
| 2000 |
| 13 | | João F. G. de Freitas,
Mahesan Niranjan,
Andrew H. Gee:
Hierarchical Bayesian Models for Regularization in Sequential Learning.
Neural Computation 12(4): 933-953 (2000) |
| 12 | | João F. G. de Freitas,
Mahesan Niranjan,
Andrew H. Gee,
Arnaud Doucet:
Sequential Monte Carlo Methods to Train Neural Network Models.
Neural Computation 12(4): 955-993 (2000) |
| 11 | EE | João F. G. de Freitas,
Mahesan Niranjan,
Andrew H. Gee:
Dynamic Learning with the EM Algorithm for Neural Networks.
VLSI Signal Processing 26(1-2): 119-131 (2000) |
| 1999 |
| 10 | EE | Gavin Smith,
João F. G. de Freitas,
Tony Robinson,
Mahesan Niranjan:
Speech Modelling Using Subspace and EM Techniques.
NIPS 1999: 796-802 |
| 1998 |
| 9 | EE | Martin J. J. Scott,
Mahesan Niranjan,
Richard W. Prager:
Realisable Classifiers: Improving Operating Performance on Variable Cost Problems.
BMVC 1998 |
| 8 | EE | João F. G. de Freitas,
Mahesan Niranjan,
Arnaud Doucet,
Andrew H. Gee:
Global Optimisation of Neural Network Models via Sequential Sampling.
NIPS 1998: 410-416 |
| 7 | EE | D. R. Lovell,
Christopher R. Dance,
Mahesan Niranjan,
Richard W. Prager,
Kevin J. Dalton,
R. Derom:
Feature selection using expected attainable discrimination.
Pattern Recognition Letters 19(5-6): 393-402 (1998) |
| 1997 |
| 6 | | João F. G. de Freitas,
Mahesan Niranjan,
Andrew H. Gee:
Regularisation in Sequential Learning Algorithms.
NIPS 1997 |
| 5 | EE | Sean B. Holden,
Mahesan Niranjan:
Average-Case Learning Curves for Radial Basis Function Networks.
Neural Computation 9(2): 441-460 (1997) |
| 1996 |
| 4 | EE | Mahesan Niranjan:
Sequential Tracking in Pricing Financial Options using Model Based and Neural Network Approaches.
NIPS 1996: 960-966 |
| 1995 |
| 3 | EE | Sean B. Holden,
Mahesan Niranjan:
On the practical applicability of VC dimension bounds.
Neural Computation 7(6): 1265-1288 (1995) |
| 1990 |
| 2 | | Mahesan Niranjan,
Frank Fallside:
Speech Feature Extraction Using Neural Networks.
EURASIP Workshop 1990: 197-204 |
| 1 | EE | Visakan Kadirkamanathan,
Mahesan Niranjan,
Frank Fallside:
Sequential Adaptation of Radial Basis Function Networks.
NIPS 1990: 721-727 |