![]() | ![]() |
Mark Girolami
List of publications from the DBLP Bibliography Server - FAQ
2009 | ||
---|---|---|
61 | EE | Theodoros Damoulas, Mark A. Girolami: Pattern recognition with a Bayesian kernel combination machine. Pattern Recognition Letters 30(1): 46-54 (2009) |
2008 | ||
60 | EE | Ben Calderhead, Mark Girolami, Neil D. Lawrence: Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes. NIPS 2008: 217-224 |
59 | EE | Nicola Lama, Mark Girolami: vbmp: Variational Bayesian Multinomial Probit Regression for multi-class classification in R. Bioinformatics 24(1): 135-136 (2008) |
58 | EE | Theodoros Damoulas, Mark A. Girolami: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics 24(10): 1264-1270 (2008) |
57 | EE | Vladislav Vyshemirsky, Mark Girolami: BioBayes: A software package for Bayesian inference in systems biology. Bioinformatics 24(17): 1933-1934 (2008) |
56 | EE | Vladislav Vyshemirsky, Mark A. Girolami: Bayesian ranking of biochemical system models. Bioinformatics 24(20): 2421 (2008) |
55 | EE | Vladislav Vyshemirsky, Mark Girolami: Bayesian ranking of biochemical system models. Bioinformatics 24(6): 833-839 (2008) |
54 | EE | Ian M. Overton, Gianandrea Padovani, Mark A. Girolami, Geoffrey J. Barton: ParCrys: a Parzen window density estimation approach to protein crystallization propensity prediction. Bioinformatics 24(7): 901-907 (2008) |
53 | EE | Mingjun Zhong, Fabien Lotte, Mark A. Girolami, Anatole Lécuyer: Classifying EEG for brain computer interfaces using Gaussian processes. Pattern Recognition Letters 29(3): 354-359 (2008) |
52 | EE | Mark Girolami: Bayesian inference for differential equations. Theor. Comput. Sci. 408(1): 4-16 (2008) |
2007 | ||
51 | EE | Oliver Sharma, Mark Girolami, Joseph S. Sventek: Detecting worm variants using machine learning. CoNEXT 2007: 2 |
50 | EE | Dongshan Xing, Mark Girolami: Employing Latent Dirichlet Allocation for fraud detection in telecommunications. Pattern Recognition Letters 28(13): 1727-1734 (2007) |
49 | EE | S. Manocha, Mark Girolami: An empirical analysis of the probabilistic K-nearest neighbour classifier. Pattern Recognition Letters 28(13): 1818-1824 (2007) |
2006 | ||
48 | EE | Gavin C. Cawley, Nicola L. C. Talbot, Mark Girolami: Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation. NIPS 2006: 209-216 |
47 | EE | Mark Girolami, Mingjun Zhong: Data Integration for Classification Problems Employing Gaussian Process Priors. NIPS 2006: 465-472 |
46 | EE | Robert Jenssen, Torbjørn Eltoft, Mark Girolami, Deniz Erdogmus: Kernel Maximum Entropy Data Transformation and an Enhanced Spectral Clustering Algorithm. NIPS 2006: 633-640 |
45 | EE | Anna Szymkowiak-Have, Mark Girolami, Jan Larsen: Clustering via kernel decomposition. IEEE Transactions on Neural Networks 17(1): 256-264 (2006) |
44 | EE | Mark Girolami, Simon Rogers: Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors. Neural Computation 18(8): 1790-1817 (2006) |
2005 | ||
43 | EE | Simon Rogers, Mark Girolami, Ronald Krebs, Harald Mischak: Disease Classification from Capillary Electrophoresis: Mass Spectrometry. ICAPR (1) 2005: 183-191 |
42 | EE | Mark Girolami, Simon Rogers: Hierarchic Bayesian models for kernel learning. ICML 2005: 241-248 |
41 | EE | Leif Azzopardi, Mark Girolami, Malcolm Crowe: Probabilistic hyperspace analogue to language. SIGIR 2005: 575-576 |
40 | EE | Simon Rogers, Mark Girolami: A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21(14): 3131-3137 (2005) |
39 | EE | Mark Girolami, Ata Kabán: Sequential Activity Profiling: Latent Dirichlet Allocation of Markov Chains. Data Min. Knowl. Discov. 10(3): 175-196 (2005) |
38 | EE | Simon Rogers, Mark Girolami, Colin Campbell, Rainer Breitling: The Latent Process Decomposition of cDNA Microarray Data Sets. IEEE/ACM Trans. Comput. Biology Bioinform. 2(2): 143-156 (2005) |
2004 | ||
37 | EE | Ali Al-Shahib, Chao He, Aik Choon Tan, Mark Girolami, David Gilbert: An Assessment of Feature Relevance in Predicting Protein Function from Sequence. IDEAL 2004: 52-57 |
36 | EE | Leif Azzopardi, Mark Girolami, Cornelis Joost van Rijsbergen: User biased document language modelling. SIGIR 2004: 542-543 |
35 | EE | Mark Girolami, Rainer Breitling: Biologically valid linear factor models of gene expression. Bioinformatics 20(17): 3021-3033 (2004) |
34 | EE | Chao He, Mark Girolami, Gary Ross: Employing optimized combinations of one-class classifiers for automated currency validation. Pattern Recognition 37(6): 1085-1096 (2004) |
33 | EE | Chao He, Mark Girolami: Novelty detection employing an L2 optimal non-parametric density estimator. Pattern Recognition Letters 25(12): 1389-1397 (2004) |
2003 | ||
32 | EE | Mark Girolami, Ata Kabán: Simplicial Mixtures of Markov Chains: Distributed Modelling of Dynamic User Profiles. NIPS 2003 |
31 | EE | Leif Azzopardi, Mark Girolami, Keith van Risjbergen: Investigating the relationship between language model perplexity and IR precision-recall measures. SIGIR 2003: 369-370 |
30 | EE | Mark Girolami, Ata Kabán: On an equivalence between PLSI and LDA. SIGIR 2003: 433-434 |
29 | EE | Mark Girolami, Chao He: Probability Density Estimation from Optimally Condensed Data Samples. IEEE Trans. Pattern Anal. Mach. Intell. 25(10): 1253-1264 (2003) |
28 | Ella Bingham, Ata Kabán, Mark Girolami: Topic Identification in Dynamical Text by Complexity Pursuit. Neural Processing Letters 17(1): 69-83 (2003) | |
2002 | ||
27 | Fabio Crestani, Mark Girolami, C. J. van Rijsbergen: Advances in Information Retrieval, 24th BCS-IRSG European Colloquium on IR Research Glasgow, UK, March 25-27, 2002 Proceedings Springer 2002 | |
26 | EE | Ata Kabán, Peter Tiño, Mark Girolami: A General Framework for a Principled Hierarchical Visualization of Multivariate Data. IDEAL 2002: 518-523 |
25 | Ata Kabán, Mark Girolami: A Dynamic Probabilistic Model to Visualise Topic Evolution in Text Streams. J. Intell. Inf. Syst. 18(2-3): 107-125 (2002) | |
24 | Alexei Vinokourov, Mark Girolami: A Probabilistic Framework for the Hierarchic Organisation and Classification of Document Collections. J. Intell. Inf. Syst. 18(2-3): 153-172 (2002) | |
23 | EE | Mark Girolami: Orthogonal Series Density Estimation and the Kernel Eigenvalue Problem. Neural Computation 14(3): 669-688 (2002) |
22 | Ata Kabán, Mark Girolami: Fast Extraction of Semantic Features from a Latent Semantic Indexed Text Corpus. Neural Processing Letters 15(1): 31-43 (2002) | |
21 | EE | Mark Girolami: Latent variable models for the topographic organisation of discrete and strictly positive data. Neurocomputing 48(1-4): 185-198 (2002) |
20 | EE | Fabio Crestani, Mark Girolami, C. J. van Rijsbergen: Report on the 24th European colloquium on information retrieval research (ECIR 2002). SIGIR Forum 36(1): 6-9 (2002) |
19 | EE | Fabio Crestani, Mark Girolami: Report on the 24th European Colloquium on Information Retrieval Research. SIGMOD Record 31(3): 77-80 (2002) |
2001 | ||
18 | EE | Ella Bingham, Ata Kabán, Mark Girolami: Finding Topics in Dynamical Text: Application to Chat Line Discussions. WWW Posters 2001 |
17 | EE | Ata Kabán, Mark Girolami: A Combined Latent Class and Trait Model for the Analysis and Visualization of Discrete Data. IEEE Trans. Pattern Anal. Mach. Intell. 23(8): 859-872 (2001) |
16 | EE | Mark Girolami: A Variational Method for Learning Sparse and Overcomplete Representations. Neural Computation 13(11): 2517-2532 (2001) |
15 | Roman Rosipal, Mark Girolami: An Expectation-Maximization Approach to Nonlinear Component Analysis. Neural Computation 13(3): 505-510 (2001) | |
14 | EE | Roman Rosipal, Mark Girolami, Leonard J. Trejo, Andrzej Cichocki: Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression. Neural Computing and Applications 10(3): 231-243 (2001) |
2000 | ||
13 | EE | Mark Girolami, Alexei Vinokourov, Ata Kabán: The Organization and Visualization of Document Corpora: A Probabilistic Approach. DEXA Workshop 2000: 558-564 |
12 | EE | Mark Girolami: A generative model for sparse discrete binary data with non-uniform categorical priors. ESANN 2000: 1-6 |
11 | EE | Alexei Vinokourov, Mark Girolami: Probabilistic Hierarchical Clustering Method for Organizing Collections of Text Documents. ICPR 2000: 2182-2185 |
10 | EE | Ata Kabán, Mark Girolami: Initialized and Guided EM-Clustering of Sparse Binary Data with Application to Text Based Documents. ICPR 2000: 2744-2747 |
1999 | ||
9 | Te-Won Lee, Mark Girolami, Terrence J. Sejnowski: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources. Neural Computation 11(2): 417-441 (1999) | |
1998 | ||
8 | EE | Mark Girolami, Andrzej Cichocki, Shun-ichi Amari: A common neural-network model for unsupervised exploratory data analysis and independent component analysis. IEEE Transactions on Neural Networks 9(6): 1495-1501 (1998) |
7 | Mark Girolami: An Alternative Perspective on Adaptive Independent Component Analysis Algorithms. Neural Computation 10(8): 2103-2114 (1998) | |
6 | Mark Girolami: The Latent Variable Data Model for Exploratory Data Analysis and Visualisation: A Generalisation of the Nonlinear Infomax Algorithm. Neural Processing Letters 8(1): 27-39 (1998) | |
5 | EE | Mark Girolami: A nonlinear model of the binaural cocktail party effect. Neurocomputing 22(1-3): 201-215 (1998) |
1997 | ||
4 | Mark Girolami, Colin Fyfe: Independence is far from normal. ESANN 1997 | |
3 | EE | Mark Girolami, Colin Fyfe: Stochastic ICA Contrast Maximisation Using Oja's Nonlinear PCA Algorithm. Int. J. Neural Syst. 8(5-6): 661-678 (1997) |
2 | EE | Mark Girolami, Colin Fyfe: An extended exploratory projection pursuit network with linear and nonlinear anti-hebbian lateral connections applied to the cocktail party problem. Neural Networks 10(9): 1607-1618 (1997) |
1996 | ||
1 | Mark Girolami, Colin Fyfe: A Temporal Model of Linear Anti-Hebbian Learning. Neural Processing Letters 4(3): 139-148 (1996) |