2009 | ||
---|---|---|
52 | EE | Taiji Suzuki, Masashi Sugiyama: Estimating Squared-Loss Mutual Information for Independent Component Analysis. ICA 2009: 130-137 |
51 | EE | Shinichi Nakajima, Masashi Sugiyama: Analysis of Variational Bayesian Matrix Factorization. PAKDD 2009: 314-326 |
50 | EE | Takeaki Uno, Masashi Sugiyama, Koji Tsuda: Efficient Construction of Neighborhood Graphs by the Multiple Sorting Method CoRR abs/0904.3151: (2009) |
2008 | ||
49 | Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiyama, Jan Peters: Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation. AAAI 2008: 1351-1356 | |
48 | EE | Liwei Wang, Masashi Sugiyama, Cheng Yang, Zhi-Hua Zhou, Jufu Feng: On the Margin Explanation of Boosting Algorithms. COLT 2008: 479-490 |
47 | EE | Masashi Sugiyama, Shinichi Nakajima: Pool-Based Agnostic Experiment Design in Linear Regression. ECML/PKDD (2) 2008: 406-422 |
46 | EE | Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, Takafumi Kanamori: Inlier-Based Outlier Detection via Direct Density Ratio Estimation. ICDM 2008: 223-232 |
45 | EE | Akiko Takeda, Masashi Sugiyama: nu-support vector machine as conditional value-at-risk minimization. ICML 2008: 1056-1063 |
44 | EE | Neil Rubens, Vera Sheinman, Takenobu Tokunaga, Masashi Sugiyama: Order Retrieval. LKR 2008: 310-317 |
43 | EE | Takafumi Kanamori, Shohei Hido, Masashi Sugiyama: Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection. NIPS 2008: 809-816 |
42 | EE | Masashi Sugiyama, Tsuyoshi Idé, Shinichi Nakajima, Jun Sese: Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction. PAKDD 2008: 333-344 |
41 | EE | Yuta Tsuboi, Hisashi Kashima, Shohei Hido, Steffen Bickel, Masashi Sugiyama: Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation. SDM 2008: 443-454 |
40 | EE | Masashi Sugiyama, Neil Rubens: Active Learning with Model Selection in Linear Regression. SDM 2008: 518-529 |
39 | EE | Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama: Integration of Multiple Networks for Robust Label Propagation. SDM 2008: 716-726 |
38 | EE | Masashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar: Geodesic Gaussian kernels for value function approximation. Auton. Robots 25(3): 287-304 (2008) |
37 | EE | Masashi Sugiyama, Motoaki Kawanabe, Gilles Blanchard, Klaus-Robert Müller: Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise. IEICE Transactions 91-D(5): 1577-1580 (2008) |
36 | EE | Masashi Sugiyama, Neil Rubens: A batch ensemble approach to active learning with model selection. Neural Networks 21(9): 1278-1286 (2008) |
2007 | ||
35 | EE | Keisuke Yamazaki, Motoaki Kawanabe, Sumio Watanabe, Masashi Sugiyama, Klaus-Robert Müller: Asymptotic Bayesian generalization error when training and test distributions are different. ICML 2007: 1079-1086 |
34 | EE | Masashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar: Value Function Approximation on Non-Linear Manifolds for Robot Motor Control. ICRA 2007: 1733-1740 |
33 | EE | Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Von Bünau, Motoaki Kawanabe: Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation. NIPS 2007 |
32 | EE | Tsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama, Kiyoshi Asai: Multi-Task Learning via Conic Programming. NIPS 2007 |
31 | EE | Neil Rubens, Masashi Sugiyama: Influence-based collaborative active learning. RecSys 2007: 145-148 |
30 | EE | Shun Gokita, Masashi Sugiyama, Keisuke Sakurai: Analytic Optimization of Adaptive Ridge Parameters Based on Regularized Subspace Information Criterion. IEICE Transactions 90-A(11): 2584-2592 (2007) |
29 | EE | Masashi Sugiyama: Generalization Error Estimation for Non-linear Learning Methods. IEICE Transactions 90-A(7): 1496-1499 (2007) |
28 | EE | Yasushi Hidaka, Masashi Sugiyama: A New Meta-Criterion for Regularized Subspace Information Criterion. IEICE Transactions 90-D(11): 1779-1786 (2007) |
2006 | ||
27 | EE | Masashi Sugiyama, Benjamin Blankertz, Matthias Krauledat, Guido Dornhege, Klaus-Robert Müller: Importance-Weighted Cross-Validation for Covariate Shift. DAGM-Symposium 2006: 354-363 |
26 | EE | Motoaki Kawanabe, Gilles Blanchard, Masashi Sugiyama, Vladimir Spokoiny, Klaus-Robert Müller: A Novel Dimension Reduction Procedure for Searching Non-Gaussian Subspaces. ICA 2006: 149-156 |
25 | EE | Masashi Sugiyama: Local Fisher discriminant analysis for supervised dimensionality reduction. ICML 2006: 905-912 |
24 | EE | Amos J. Storkey, Masashi Sugiyama: Mixture Regression for Covariate Shift. NIPS 2006: 1337-1344 |
23 | EE | Akira Tanaka, Masashi Sugiyama, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi: Model Selection Using a Class of Kernels with an Invariant Metric. SSPR/SPR 2006: 862-870 |
22 | EE | Masashi Sugiyama, Keisuke Sakurai: Analytic Optimization of Shrinkage Parameters Based on Regularized Subspace Information Criterion. IEICE Transactions 89-A(8): 2216-2225 (2006) |
21 | EE | Masashi Sugiyama, Hidemitsu Ogawa: Constructing Kernel Functions for Binary Regression. IEICE Transactions 89-D(7): 2243-2249 (2006) |
20 | EE | Masashi Sugiyama: Active Learning in Approximately Linear Regression Based on Conditional Expectation of Generalization Error. Journal of Machine Learning Research 7: 141-166 (2006) |
19 | EE | Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama, Vladimir Spokoiny, Klaus-Robert Müller: In Search of Non-Gaussian Components of a High-Dimensional Distribution. Journal of Machine Learning Research 7: 247-282 (2006) |
2005 | ||
18 | EE | Masashi Sugiyama, Klaus-Robert Müller: Model Selection Under Covariate Shift. ICANN (2) 2005: 235-240 |
17 | EE | Masashi Sugiyama: Active Learning for Misspecified Models. NIPS 2005 |
16 | EE | Gilles Blanchard, Masashi Sugiyama, Motoaki Kawanabe, Vladimir Spokoiny, Klaus-Robert Müller: Non-Gaussian Component Analysis: a Semi-parametric Framework for Linear Dimension Reduction. NIPS 2005 |
2004 | ||
15 | EE | Masashi Sugiyama, Motoaki Kawanabe, Klaus-Robert Müller: Regularizing generalization error estimators: a novel approach to robust model selection. ESANN 2004: 163-168 |
14 | Masashi Sugiyama: Estimating the error at given test input points for linear regression. Neural Networks and Computational Intelligence 2004: 113-118 | |
13 | EE | Masashi Sugiyama, Motoaki Kawanabe, Klaus-Robert Müller: Trading Variance Reduction with Unbiasedness: The Regularized Subspace Information Criterion for Robust Model Selection in Kernel Regression. Neural Computation 16(5): 1077-1104 (2004) |
2002 | ||
12 | EE | Masashi Sugiyama, Klaus-Robert Müller: Selecting Ridge Parameters in Infinite Dimensional Hypothesis Spaces. ICANN 2002: 528-534 |
11 | EE | Masashi Sugiyama, Klaus-Robert Müller: The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces. Journal of Machine Learning Research 3: 323-359 (2002) |
10 | Masashi Sugiyama, Hidemitsu Ogawa: Theoretical and Experimental Evaluation of the Subspace Information Criterion. Machine Learning 48(1-3): 25-50 (2002) | |
9 | EE | Masashi Sugiyama, Hidemitsu Ogawa: Optimal design of regularization term and regularization parameter by subspace information criterion. Neural Networks 15(3): 349-361 (2002) |
8 | EE | Masashi Sugiyama, Hidemitsu Ogawa: A unified method for optimizing linear image restoration filters. Signal Processing 82(11): 1773-1787 (2002) |
2001 | ||
7 | Masashi Sugiyama, Hidemitsu Ogawa: Incremental Active Learning for Optimal Generalization. Neural Computation 12(12): 2909-2940 (2001) | |
6 | Masashi Sugiyama, Hidemitsu Ogawa: Subspace Information Criterion for Model Selection. Neural Computation 13(8): 1863-1889 (2001) | |
5 | EE | Masashi Sugiyama, Hidemitsu Ogawa: Incremental projection learning for optimal generalization. Neural Networks 14(1): 53-66 (2001) |
4 | EE | Masashi Sugiyama, Hidemitsu Ogawa: Properties of incremental projection learning. Neural Networks 14(1): 67-78 (2001) |
2000 | ||
3 | EE | Masashi Sugiyama, Hidemitsu Ogawa: A new information criterion for the selection of subspace models. ESANN 2000: 69-74 |
2 | EE | Masashi Sugiyama, Hidemitsu Ogawa: Incremental Active Learning with Bias Reduction. IJCNN (1) 2000: 15-20 |
1999 | ||
1 | EE | Masashi Sugiyama, Hidemitsu Ogawa: Training Data Selection for Optimal Generalization in Trigonometric Polynomial Networks. NIPS 1999: 624-630 |