dblp.uni-trier.dewww.uni-trier.de

Masashi Sugiyama

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2009
52EETaiji Suzuki, Masashi Sugiyama: Estimating Squared-Loss Mutual Information for Independent Component Analysis. ICA 2009: 130-137
51EEShinichi Nakajima, Masashi Sugiyama: Analysis of Variational Bayesian Matrix Factorization. PAKDD 2009: 314-326
50EETakeaki Uno, Masashi Sugiyama, Koji Tsuda: Efficient Construction of Neighborhood Graphs by the Multiple Sorting Method CoRR abs/0904.3151: (2009)
2008
49 Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiyama, Jan Peters: Adaptive Importance Sampling with Automatic Model Selection in Value Function Approximation. AAAI 2008: 1351-1356
48EELiwei Wang, Masashi Sugiyama, Cheng Yang, Zhi-Hua Zhou, Jufu Feng: On the Margin Explanation of Boosting Algorithms. COLT 2008: 479-490
47EEMasashi Sugiyama, Shinichi Nakajima: Pool-Based Agnostic Experiment Design in Linear Regression. ECML/PKDD (2) 2008: 406-422
46EEShohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, Takafumi Kanamori: Inlier-Based Outlier Detection via Direct Density Ratio Estimation. ICDM 2008: 223-232
45EEAkiko Takeda, Masashi Sugiyama: nu-support vector machine as conditional value-at-risk minimization. ICML 2008: 1056-1063
44EENeil Rubens, Vera Sheinman, Takenobu Tokunaga, Masashi Sugiyama: Order Retrieval. LKR 2008: 310-317
43EETakafumi Kanamori, Shohei Hido, Masashi Sugiyama: Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection. NIPS 2008: 809-816
42EEMasashi Sugiyama, Tsuyoshi Idé, Shinichi Nakajima, Jun Sese: Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction. PAKDD 2008: 333-344
41EEYuta Tsuboi, Hisashi Kashima, Shohei Hido, Steffen Bickel, Masashi Sugiyama: Direct Density Ratio Estimation for Large-scale Covariate Shift Adaptation. SDM 2008: 443-454
40EEMasashi Sugiyama, Neil Rubens: Active Learning with Model Selection in Linear Regression. SDM 2008: 518-529
39EETsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama: Integration of Multiple Networks for Robust Label Propagation. SDM 2008: 716-726
38EEMasashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar: Geodesic Gaussian kernels for value function approximation. Auton. Robots 25(3): 287-304 (2008)
37EEMasashi Sugiyama, Motoaki Kawanabe, Gilles Blanchard, Klaus-Robert Müller: Approximating the Best Linear Unbiased Estimator of Non-Gaussian Signals with Gaussian Noise. IEICE Transactions 91-D(5): 1577-1580 (2008)
36EEMasashi Sugiyama, Neil Rubens: A batch ensemble approach to active learning with model selection. Neural Networks 21(9): 1278-1286 (2008)
2007
35EEKeisuke Yamazaki, Motoaki Kawanabe, Sumio Watanabe, Masashi Sugiyama, Klaus-Robert Müller: Asymptotic Bayesian generalization error when training and test distributions are different. ICML 2007: 1079-1086
34EEMasashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar: Value Function Approximation on Non-Linear Manifolds for Robot Motor Control. ICRA 2007: 1733-1740
33EEMasashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Von Bünau, Motoaki Kawanabe: Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation. NIPS 2007
32EETsuyoshi Kato, Hisashi Kashima, Masashi Sugiyama, Kiyoshi Asai: Multi-Task Learning via Conic Programming. NIPS 2007
31EENeil Rubens, Masashi Sugiyama: Influence-based collaborative active learning. RecSys 2007: 145-148
30EEShun Gokita, Masashi Sugiyama, Keisuke Sakurai: Analytic Optimization of Adaptive Ridge Parameters Based on Regularized Subspace Information Criterion. IEICE Transactions 90-A(11): 2584-2592 (2007)
29EEMasashi Sugiyama: Generalization Error Estimation for Non-linear Learning Methods. IEICE Transactions 90-A(7): 1496-1499 (2007)
28EEYasushi Hidaka, Masashi Sugiyama: A New Meta-Criterion for Regularized Subspace Information Criterion. IEICE Transactions 90-D(11): 1779-1786 (2007)
2006
27EEMasashi Sugiyama, Benjamin Blankertz, Matthias Krauledat, Guido Dornhege, Klaus-Robert Müller: Importance-Weighted Cross-Validation for Covariate Shift. DAGM-Symposium 2006: 354-363
26EEMotoaki Kawanabe, Gilles Blanchard, Masashi Sugiyama, Vladimir Spokoiny, Klaus-Robert Müller: A Novel Dimension Reduction Procedure for Searching Non-Gaussian Subspaces. ICA 2006: 149-156
25EEMasashi Sugiyama: Local Fisher discriminant analysis for supervised dimensionality reduction. ICML 2006: 905-912
24EEAmos J. Storkey, Masashi Sugiyama: Mixture Regression for Covariate Shift. NIPS 2006: 1337-1344
23EEAkira Tanaka, Masashi Sugiyama, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi: Model Selection Using a Class of Kernels with an Invariant Metric. SSPR/SPR 2006: 862-870
22EEMasashi Sugiyama, Keisuke Sakurai: Analytic Optimization of Shrinkage Parameters Based on Regularized Subspace Information Criterion. IEICE Transactions 89-A(8): 2216-2225 (2006)
21EEMasashi Sugiyama, Hidemitsu Ogawa: Constructing Kernel Functions for Binary Regression. IEICE Transactions 89-D(7): 2243-2249 (2006)
20EEMasashi Sugiyama: Active Learning in Approximately Linear Regression Based on Conditional Expectation of Generalization Error. Journal of Machine Learning Research 7: 141-166 (2006)
19EEGilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama, Vladimir Spokoiny, Klaus-Robert Müller: In Search of Non-Gaussian Components of a High-Dimensional Distribution. Journal of Machine Learning Research 7: 247-282 (2006)
2005
18EEMasashi Sugiyama, Klaus-Robert Müller: Model Selection Under Covariate Shift. ICANN (2) 2005: 235-240
17EEMasashi Sugiyama: Active Learning for Misspecified Models. NIPS 2005
16EEGilles Blanchard, Masashi Sugiyama, Motoaki Kawanabe, Vladimir Spokoiny, Klaus-Robert Müller: Non-Gaussian Component Analysis: a Semi-parametric Framework for Linear Dimension Reduction. NIPS 2005
2004
15EEMasashi Sugiyama, Motoaki Kawanabe, Klaus-Robert Müller: Regularizing generalization error estimators: a novel approach to robust model selection. ESANN 2004: 163-168
14 Masashi Sugiyama: Estimating the error at given test input points for linear regression. Neural Networks and Computational Intelligence 2004: 113-118
13EEMasashi Sugiyama, Motoaki Kawanabe, Klaus-Robert Müller: Trading Variance Reduction with Unbiasedness: The Regularized Subspace Information Criterion for Robust Model Selection in Kernel Regression. Neural Computation 16(5): 1077-1104 (2004)
2002
12EEMasashi Sugiyama, Klaus-Robert Müller: Selecting Ridge Parameters in Infinite Dimensional Hypothesis Spaces. ICANN 2002: 528-534
11EEMasashi Sugiyama, Klaus-Robert Müller: The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces. Journal of Machine Learning Research 3: 323-359 (2002)
10 Masashi Sugiyama, Hidemitsu Ogawa: Theoretical and Experimental Evaluation of the Subspace Information Criterion. Machine Learning 48(1-3): 25-50 (2002)
9EEMasashi Sugiyama, Hidemitsu Ogawa: Optimal design of regularization term and regularization parameter by subspace information criterion. Neural Networks 15(3): 349-361 (2002)
8EEMasashi Sugiyama, Hidemitsu Ogawa: A unified method for optimizing linear image restoration filters. Signal Processing 82(11): 1773-1787 (2002)
2001
7 Masashi Sugiyama, Hidemitsu Ogawa: Incremental Active Learning for Optimal Generalization. Neural Computation 12(12): 2909-2940 (2001)
6 Masashi Sugiyama, Hidemitsu Ogawa: Subspace Information Criterion for Model Selection. Neural Computation 13(8): 1863-1889 (2001)
5EEMasashi Sugiyama, Hidemitsu Ogawa: Incremental projection learning for optimal generalization. Neural Networks 14(1): 53-66 (2001)
4EEMasashi Sugiyama, Hidemitsu Ogawa: Properties of incremental projection learning. Neural Networks 14(1): 67-78 (2001)
2000
3EEMasashi Sugiyama, Hidemitsu Ogawa: A new information criterion for the selection of subspace models. ESANN 2000: 69-74
2EEMasashi Sugiyama, Hidemitsu Ogawa: Incremental Active Learning with Bias Reduction. IJCNN (1) 2000: 15-20
1999
1EEMasashi Sugiyama, Hidemitsu Ogawa: Training Data Selection for Optimal Generalization in Trigonometric Polynomial Networks. NIPS 1999: 624-630

Coauthor Index

1Takayuki Akiyama [49]
2Kiyoshi Asai [32]
3Steffen Bickel [41]
4Gilles Blanchard [16] [19] [26] [37]
5Benjamin Blankertz [27]
6Paul Von Bünau [33]
7Guido Dornhege [27]
8Jufu Feng [48]
9Shun Gokita [30]
10Hirotaka Hachiya [34] [38] [49]
11Yasushi Hidaka [28]
12Shohei Hido [41] [43] [46]
13Tsuyoshi Idé [42]
14Hideyuki Imai [23]
15Takafumi Kanamori [43] [46]
16Hisashi Kashima [32] [33] [39] [41] [46]
17Tsuyoshi Kato [32] [39]
18Motoaki Kawanabe [13] [15] [16] [19] [26] [33] [35] [37]
19Matthias Krauledat [27]
20Mineichi Kudo [23]
21Masaaki Miyakoshi [23]
22Klaus-Robert Müller [11] [12] [13] [15] [16] [18] [19] [26] [27] [35] [37]
23Shinichi Nakajima [33] [42] [47] [51]
24Hidemitsu Ogawa [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [21]
25Jan Peters [49]
26Neil Rubens [31] [36] [40] [44]
27Keisuke Sakurai [22] [30]
28Jun Sese [42]
29Vera Sheinman [44]
30Vladimir Spokoiny [16] [19] [26]
31Amos J. Storkey [24]
32Taiji Suzuki [52]
33Akiko Takeda [45]
34Akira Tanaka [23]
35Takenobu Tokunaga [44]
36Christopher Towell [34] [38]
37Yuta Tsuboi [41] [46]
38Koji Tsuda [50]
39Takeaki Uno [50]
40Sethu Vijayakumar [34] [38]
41Liwei Wang [48]
42Sumio Watanabe [35]
43Keisuke Yamazaki [35]
44Cheng Yang [48]
45Zhi-Hua Zhou [48]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)