2008 |
75 | EE | Atsuyoshi Nakamura,
Mineichi Kudo:
What Sperner Family Concept Class is Easy to Be Enumerated?
ICDM 2008: 482-491 |
74 | EE | Yohji Shidara,
Mineichi Kudo,
Atsuyoshi Nakamura:
Classification by bagged consistent itemset rules.
ICPR 2008: 1-4 |
73 | EE | Mineichi Kudo,
Atsuyoshi Nakamura,
Ichigaku Takigawa:
Classification by reflective convex hulls.
ICPR 2008: 1-4 |
72 | EE | Kazuhiro Kamiya,
Mineichi Kudo,
Hidetoshi Nonaka,
Jun Toyama:
Sitting posture analysis by pressure sensors.
ICPR 2008: 1-4 |
71 | EE | Akira Tanaka,
Hideyuki Imai,
Mineichi Kudo,
Masaaki Miyakoshi:
Optimal Kernel in a Class of Kernels with an Invariant Metric.
SSPR/SPR 2008: 530-539 |
70 | EE | Kazuaki Aoki,
Mineichi Kudo:
Feature and Classifier Selection in Class Decision Trees.
SSPR/SPR 2008: 562-571 |
69 | EE | Hiroshi Tenmoto,
Mineichi Kudo:
Soft Feature Selection by Using a Histogram-Based Classifier.
SSPR/SPR 2008: 572-581 |
68 | EE | Satoshi Shirai,
Mineichi Kudo,
Atsuyoshi Nakamura:
Bagging, Random Subspace Method and Biding.
SSPR/SPR 2008: 801-810 |
67 | EE | Maiko Sato,
Mineichi Kudo,
Jun Toyama:
Behavior Analysis of Volume Prototypes in High Dimensionality.
SSPR/SPR 2008: 874-884 |
66 | EE | Mineichi Kudo,
Tetsuya Murai:
Extended DNF Expression and Variable Granularity in Information Tables.
IEEE T. Fuzzy Systems 16(2): 285-298 (2008) |
65 | EE | Yohji Shidara,
Mineichi Kudo,
Atsuyoshi Nakamura:
Classification Based on Consistent Itemset Rules.
Trans. MLDM 1(1): 17-30 (2008) |
2007 |
64 | EE | Hisashi Tosaka,
Atsuyoshi Nakamura,
Mineichi Kudo:
Mining Subtrees with Frequent Occurrence of Similar Subtrees.
Discovery Science 2007: 286-290 |
63 | EE | Mineichi Kudo,
Satoshi Shirai,
Hiroshi Tenmoto:
A Combination of Sample Subsets and Feature Subsets in One-Against-Other Classifiers.
MCS 2007: 241-250 |
62 | EE | Yohji Shidara,
Atsuyoshi Nakamura,
Mineichi Kudo:
CCIC: Consistent Common Itemsets Classifier.
MLDM 2007: 490-498 |
61 | EE | Yuji Muto,
Mineichi Kudo,
Yohji Shidara:
Reduction of Categorical and Numerical Attribute Values for Understandability of Data and Rules.
RSKT 2007: 211-218 |
60 | EE | Akira Tanaka,
Hideyuki Imai,
Mineichi Kudo,
Masaaki Miyakoshi:
Integrated kernels and their properties.
Pattern Recognition 40(11): 2930-2938 (2007) |
2006 |
59 | EE | Masafumi Yamada,
Mineichi Kudo,
Hidetoshi Nonaka,
Jun Toyama:
Hipprint Person Identification and Behavior Analys.
ICPR (4) 2006: 533-536 |
58 | EE | Akira Tanaka,
Masashi Sugiyama,
Hideyuki Imai,
Mineichi Kudo,
Masaaki Miyakoshi:
Model Selection Using a Class of Kernels with an Invariant Metric.
SSPR/SPR 2006: 862-870 |
57 | EE | Yuji Muto,
Mineichi Kudo,
Tetsuya Murai:
Reduction of Attribute Values for Kansei Representation.
JACIII 10(5): 666-672 (2006) |
56 | EE | Naoto Abe,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Classifier-independent feature selection on the basis of divergence criterion.
Pattern Anal. Appl. 9(2-3): 127-137 (2006) |
55 | EE | Naoto Abe,
Mineichi Kudo:
Non-parametric classifier-independent feature selection.
Pattern Recognition 39(5): 737-746 (2006) |
2005 |
54 | EE | Hidehiko Ino,
Mineichi Kudo,
Atsuyoshi Nakamura:
A Comparative Study of Algorithms for Finding Web Communities.
ICDE Workshops 2005: 1257 |
53 | EE | Hiroyuki Hasegawa,
Mineichi Kudo,
Atsuyoshi Nakamura:
Empirical Study on Usefulness of Algorithm SACwRApper for Reputation Extraction from the WWW.
KES (4) 2005: 668-674 |
52 | EE | Taisuke Hosokawa,
Mineichi Kudo:
Person Tracking with Infrared Sensors.
KES (4) 2005: 682-688 |
51 | EE | Naoto Abe,
Mineichi Kudo:
Entropy Criterion for Classifier-Independent Feature Selection.
KES (4) 2005: 689-695 |
50 | EE | Hiroshi Tenmoto,
Mineichi Kudo:
Finding and Auto-labeling of Task Groups on E-Mails and Documents.
KES (4) 2005: 696-702 |
49 | EE | Masafumi Yamada,
Jun Toyama,
Mineichi Kudo:
Person Recognition by Pressure Sensors.
KES (4) 2005: 703-708 |
48 | EE | Ichigaku Takigawa,
Mineichi Kudo,
Atsuyoshi Nakamura:
The Convex Subclass Method: Combinatorial Classifier Based on a Family of Convex Sets.
MLDM 2005: 90-99 |
47 | EE | Atsuyoshi Nakamura,
Mineichi Kudo:
Mining Frequent Trees with Node-Inclusion Constraints.
PAKDD 2005: 850-860 |
46 | EE | Mineichi Kudo,
Tetsuya Murai:
A New Treatment and Viewpoint of Information Tables.
RSFDGrC (1) 2005: 234-243 |
45 | EE | Yuji Muto,
Mineichi Kudo:
Discernibility-Based Variable Granularity and Kansei Representations.
RSFDGrC (1) 2005: 692-700 |
44 | EE | Hiroshi Tenmoto,
Mineichi Kudo:
Density- and Complexity-Regularization in Gaussian Mixture Bayesian Classifier.
WSTST 2005: 391-399 |
43 | EE | Hidehiko Ino,
Mineichi Kudo,
Atsuyoshi Nakamura:
Partitioning of Web graphs by community topology.
WWW 2005: 661-669 |
42 | EE | Yohji Shidara,
Mineichi Kudo,
Atsuyoshi Nakamura:
Extraction of Generalized Rules with Automated Attribute Abstraction.
Foundations of Data Mining and knowledge Discovery 2005: 161-170 |
41 | EE | Kazuaki Aoki,
Toshiharu Watanabe,
Mineichi Kudo:
Design of decision trees using class-dependent feature subsets.
Systems and Computers in Japan 36(4): 37-47 (2005) |
2004 |
40 | EE | Ichigaku Takigawa,
Mineichi Kudo,
Atsuyoshi Nakamura,
Jun Toyama:
On the Minimum l1-Norm Signal Recovery in Underdetermined Source Separation.
ICA 2004: 193-200 |
39 | EE | Michal Haindl,
Jiri Grim,
Petr Somol,
Pavel Pudil,
Mineichi Kudo:
A Gaussian Mixture-Based Colour Texture Model.
ICPR (3) 2004: 177-180 |
38 | EE | Akira Tanaka,
Ichigaku Takigawa,
Hideyuki Imai,
Mineichi Kudo,
Masaaki Miyakoshi:
Projection Learning Based Kernel Machine Design Using Series of Monotone Increasing Reproducing Kernel Hilbert Spaces.
KES 2004: 1058-1064 |
37 | EE | Masafumi Yamada,
Mineichi Kudo:
Combination of Weak Evidences by D-S Theory for Person Recognition.
KES 2004: 1065-1071 |
36 | EE | Tetsuya Murai,
Masayuki Sanada,
Yasuo Kudo,
Mineichi Kudo:
A Note on Ziarko's Variable Precision Rough Set Model and Nonmonotonic Reasoning.
Rough Sets and Current Trends in Computing 2004: 103-108 |
35 | EE | Hiroshi Tenmoto,
Yasukuni Mori,
Mineichi Kudo:
Classifier-Independent Visualization of Supervised Data Structures Using a Graph.
SSPR/SPR 2004: 1043-1051 |
34 | EE | Mineichi Kudo,
Hideyuki Imai,
Akira Tanaka,
Tetsuya Murai:
A Nearest Neighbor Method Using Bisectors.
SSPR/SPR 2004: 885-893 |
2003 |
33 | EE | Atsuyoshi Nakamura,
Mineichi Kudo,
Akira Tanaka,
Kazuhiko Tanabe:
Collaborative Filtering Using Projective Restoration Operators.
Discovery Science 2003: 393-401 |
32 | EE | Atsuyoshi Nakamura,
Mineichi Kudo,
Akira Tanaka:
Collaborative Filtering Using Restoration Operators.
PKDD 2003: 339-349 |
31 | EE | Mineichi Kudo,
Naoto Masuyama,
Jun Toyama,
Masaru Shimbo:
Simple termination conditions for k-nearest neighbor method.
Pattern Recognition Letters 24(9-10): 1203-1213 (2003) |
2002 |
30 | EE | Naoto Abe,
Mineichi Kudo,
Masaru Shimbo:
Classifier-Independent Feature Selection Based on Non-parametric Discriminant Analysis.
SSPR/SPR 2002: 470-479 |
29 | EE | Kazuaki Aoki,
Mineichi Kudo:
Decision Tree Using Class-Dependent Feature Subsets.
SSPR/SPR 2002: 761-769 |
2001 |
28 | EE | Hiroki Hayashi,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Fast Labelling of Natural Scenes Using Enhanced Knowledge.
Pattern Anal. Appl. 4(1): 20-27 (2001) |
27 | EE | Yoshinori Yanagihara,
Masanori Kawakami,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
A two-channel coding of images using spline surfaces.
Systems and Computers in Japan 32(6): 13-20 (2001) |
2000 |
26 | EE | Mineichi Kudo,
Hideyuki Imai,
Masaru Shimbo:
A Histogram-Based Classifier on Overlapped Bins.
ICPR 2000: 2029-2033 |
25 | EE | Hiroshi Tenmoto,
Mineichi Kudo,
Masaru Shimbo:
Selection of the Number of Components Using a Genetic Algorithm for Mixture Model Classifiers.
SSPR/SPR 2000: 511-520 |
24 | EE | Naoto Abe,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
A Divergence Criterion for Classifier-Independent Feature Selection.
SSPR/SPR 2000: 668-676 |
23 | EE | Mineichi Kudo,
Petr Somol,
Pavel Pudil,
Masaru Shimbo,
Jack Sklansky:
Comparison of Classifier-Specific Feature Selection Algorithms.
SSPR/SPR 2000: 677-686 |
22 | EE | Mineichi Kudo,
Jack Sklansky:
Comparison of algorithms that select features for pattern classifiers.
Pattern Recognition 33(1): 25-41 (2000) |
1999 |
21 | EE | Hiroshi Tenmoto,
Mineichi Kudo,
Masaru Shimbo:
Determination of the number of components based on class separability in mixture-based classifiers.
KES 1999: 439-442 |
20 | EE | Naoto Masuyama,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Termination conditions for a fast k-nearest neighbor method.
KES 1999: 443-446 |
19 | EE | Hiroki Hayashi,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Estimation of velocity vectors from a video stream using discontinuity of optical flow.
KES 1999: 447-450 |
18 | EE | Masanori Kawakami,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Effective sampling points for two-channel spline image coding.
KES 1999: 451-454 |
17 | EE | T. Gotoh,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Geometry reconstruction of urban scenes by tracking vertical edges.
KES 1999: 455-458 |
16 | EE | J. Konishi,
S. Shimba,
Jun Toyama,
Mineichi Kudo,
Masaru Shimbo:
Tabu search for solving optimization problems on Hopfield neural networks.
KES 1999: 518-521 |
15 | EE | Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Multidimensional curve classification using passing-through regions.
Pattern Recognition Letters 20(11-13): 1103-1111 (1999) |
1998 |
14 | EE | Mineichi Kudo,
F. Taniguchi,
Hiroshi Tenmoto,
Masaru Shimbo:
Appropriate initial component densities of mixture modeling for pattern recognition.
KES (2) 1998: 216-220 |
13 | EE | Shinichi Yanagi,
Mineichi Kudo,
Masaru Shimbo:
Polynomial-sample learnability about distance-0 and 1 DNF formulas.
KES (2) 1998: 230-235 |
12 | | Mineichi Kudo,
Jack Sklansky:
Classifier-Independent Feature Selection For Two-Stage Feature Selection.
SSPR/SPR 1998: 548-554 |
11 | | Maiko Sato,
Mineichi Kudo,
Jun Toyama,
Masaru Shimbo:
Feature Selection For a Nonlinear Classifier.
SSPR/SPR 1998: 555-563 |
10 | | Hiroshi Tenmoto,
Mineichi Kudo,
Masaru Shimbo:
MDL-Based Selection of the Number of Components in Mixture Models for Pattern Classification.
SSPR/SPR 1998: 831-836 |
9 | EE | Hiroshi Tenmoto,
Mineichi Kudo,
Masaru Shimbo:
Piecewise linear classifiers with an appropriate number of hyperplanes.
Pattern Recognition 31(11): 1627-1634 (1998) |
8 | EE | Mineichi Kudo,
Yoichiro Torii,
Yasukuni Mori,
Masaru Shimbo:
Approximation of class regions by quasi convex hulls.
Pattern Recognition Letters 19(9): 777-786 (1998) |
1997 |
7 | EE | F. Taniguchi,
Mineichi Kudo,
Masaru Shimbo:
Estimation of class regions in feature space using rough set theory.
KES (2) 1997: 373-377 |
1996 |
6 | EE | Mineichi Kudo,
Shinichi Yanagi,
Masaru Shimbo:
Construction of class regions by a randomized algorithm: a randomized subclass method.
Pattern Recognition 29(4): 581-588 (1996) |
5 | EE | Mineichi Kudo,
Koji Mizukami,
Yuji Nakamura,
Masaru Shimbo:
Realization of membership quiries in character recognition.
Pattern Recognition Letters 17(1): 77-82 (1996) |
1993 |
4 | EE | Mineichi Kudo,
Masaru Shimbo:
Feature selection based on the structural indices of categories.
Pattern Recognition 26(6): 891-901 (1993) |
1992 |
3 | | Mineichi Kudo,
S. Kitamura-Abe,
Masaru Shimbo,
Y. Lida:
Analysis of context of 5'-splice site sequences in mammalian mRNA precursors by subclass method.
Computer Applications in the Biosciences 8(4): 367-376 (1992) |
1988 |
2 | EE | Mineichi Kudo,
Masaru Shimbo:
Efficient regular grammatical inference techniques by the use of partial similarities and their logical relationships.
Pattern Recognition 21(4): 401-409 (1988) |
1987 |
1 | | Mineichi Kudo,
Y. Iida,
Masaru Shimbo:
Syntactic pattern analysis of 5'-splice site sequences of mRNA precursors in higher eukaryote genes.
Computer Applications in the Biosciences 3(4): 319-324 (1987) |