2008 | ||
---|---|---|
108 | Raymond J. Mooney: Learning to Connect Language and Perception. AAAI 2008: 1598-1601 | |
107 | EE | Sonal Gupta, Joohyun Kim, Kristen Grauman, Raymond J. Mooney: Watch, Listen & Learn: Co-training on Captioned Images and Videos. ECML/PKDD (1) 2008: 457-472 |
106 | EE | Raymond J. Mooney: Learning Language from Its Perceptual Context. ECML/PKDD (1) 2008: 5 |
105 | EE | David L. Chen, Raymond J. Mooney: Learning to sportscast: a test of grounded language acquisition. ICML 2008: 128-135 |
104 | EE | Tuyen N. Huynh, Raymond J. Mooney: Discriminative structure and parameter learning for Markov logic networks. ICML 2008: 416-423 |
103 | EE | Raymond J. Mooney: Transfer Learning by Mapping and Revising Relational Knowledge. SBIA 2008: 2-3 |
102 | EE | Raymond J. Mooney: Text Mining. SBIA 2008: 6 |
2007 | ||
101 | Lilyana Mihalkova, Tuyen N. Huynh, Raymond J. Mooney: Mapping and Revising Markov Logic Networks for Transfer Learning. AAAI 2007: 608-614 | |
100 | Rohit J. Kate, Raymond J. Mooney: Learning Language Semantics from Ambiguous Supervision. AAAI 2007: 895-900 | |
99 | EE | Yuk Wah Wong, Raymond J. Mooney: Learning Synchronous Grammars for Semantic Parsing with Lambda Calculus. ACL 2007 |
98 | EE | Razvan C. Bunescu, Raymond J. Mooney: Learning to Extract Relations from the Web using Minimal Supervision. ACL 2007 |
97 | EE | Raymond J. Mooney: Learning for Semantic Parsing. CICLing 2007: 311-324 |
96 | EE | Yuk Wah Wong, Raymond J. Mooney: Generation by Inverting a Semantic Parser that Uses Statistical Machine Translation. HLT-NAACL 2007: 172-179 |
95 | EE | Rohit J. Kate, Raymond J. Mooney: Semi-Supervised Learning for Semantic Parsing using Support Vector Machines. HLT-NAACL (Short Papers) 2007: 81-84 |
94 | EE | Razvan C. Bunescu, Raymond J. Mooney: Multiple instance learning for sparse positive bags. ICML 2007: 105-112 |
93 | EE | Lilyana Mihalkova, Raymond J. Mooney: Bottom-up learning of Markov logic network structure. ICML 2007: 625-632 |
2006 | ||
92 | EE | Ruifang Ge, Raymond J. Mooney: Discriminative Reranking for Semantic Parsing. ACL 2006 |
91 | EE | Rohit J. Kate, Raymond J. Mooney: Using String-Kernels for Learning Semantic Parsers. ACL 2006 |
90 | Lilyana Mihalkova, Raymond J. Mooney: Using Active Relocation to Aid Reinforcement Learning. FLAIRS Conference 2006: 580-585 | |
89 | EE | Yuk Wah Wong, Raymond J. Mooney: Learning for Semantic Parsing with Statistical Machine Translation. HLT-NAACL 2006 |
88 | EE | Mikhail Bilenko, Beena Kamath, Raymond J. Mooney: Adaptive Blocking: Learning to Scale Up Record Linkage. ICDM 2006: 87-96 |
2005 | ||
87 | Rohit J. Kate, Yuk Wah Wong, Raymond J. Mooney: Learning to Transform Natural to Formal Languages. AAAI 2005: 1062-1068 | |
86 | EE | Prem Melville, Stewart M. Yang, Maytal Saar-Tsechansky, Raymond J. Mooney: Active Learning for Probability Estimation Using Jensen-Shannon Divergence. ECML 2005: 268-279 |
85 | EE | Yuk Lai Suen, Prem Melville, Raymond J. Mooney: Combining Bias and Variance Reduction Techniques for Regression Trees. ECML 2005: 741-749 |
84 | EE | Razvan C. Bunescu, Raymond J. Mooney: A Shortest Path Dependency Kernel for Relation Extraction. HLT/EMNLP 2005 |
83 | EE | Jonathan Wildstrom, Peter Stone, Emmett Witchel, Raymond J. Mooney, Michael Dahlin: Towards Self-Configuring Hardware for Distributed Computer Systems. ICAC 2005: 241-249 |
82 | EE | Prem Melville, Foster J. Provost, Raymond J. Mooney: An Expected Utility Approach to Active Feature-Value Acquisition. ICDM 2005: 745-748 |
81 | EE | Brian Kulis, Sugato Basu, Inderjit S. Dhillon, Raymond J. Mooney: Semi-supervised graph clustering: a kernel approach. ICML 2005: 457-464 |
80 | EE | Arindam Banerjee, Chase Krumpelman, Joydeep Ghosh, Sugato Basu, Raymond J. Mooney: Model-based overlapping clustering. KDD 2005: 532-537 |
79 | EE | Razvan C. Bunescu, Raymond J. Mooney: Subsequence Kernels for Relation Extraction. NIPS 2005 |
78 | EE | Razvan C. Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Raymond J. Mooney, Arun K. Ramani, Yuk Wah Wong: Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine 33(2): 139-155 (2005) |
77 | EE | Prem Melville, Raymond J. Mooney: Creating diversity in ensembles using artificial data. Information Fusion 6(1): 99-111 (2005) |
76 | EE | Raymond J. Mooney, Razvan C. Bunescu: Mining knowledge from text using information extraction. SIGKDD Explorations 7(1): 3-10 (2005) |
2004 | ||
75 | EE | Razvan C. Bunescu, Raymond J. Mooney: Collective Information Extraction with Relational Markov Networks. ACL 2004: 438-445 |
74 | EE | Prem Melville, Maytal Saar-Tsechansky, Foster J. Provost, Raymond J. Mooney: Active Feature-Value Acquisition for Classifier Induction. ICDM 2004: 483-486 |
73 | EE | Prem Melville, Raymond J. Mooney: Diverse ensembles for active learning. ICML 2004 |
72 | EE | Mikhail Bilenko, Sugato Basu, Raymond J. Mooney: Integrating constraints and metric learning in semi-supervised clustering. ICML 2004 |
71 | EE | Sugato Basu, Mikhail Bilenko, Raymond J. Mooney: A probabilistic framework for semi-supervised clustering. KDD 2004: 59-68 |
70 | EE | Prem Melville, Nishit Shah, Lilyana Mihalkova, Raymond J. Mooney: Experiments on Ensembles with Missing and Noisy Data. Multiple Classifier Systems 2004: 293-302 |
69 | EE | Sugato Basu, Arindam Banerjee, Raymond J. Mooney: Active Semi-Supervision for Pairwise Constrained Clustering. SDM 2004 |
2003 | ||
68 | EE | Mikhail Bilenko, Raymond J. Mooney: Employing Trainable String Similarity Metrics for Information Integration. IIWeb 2003: 67-72 |
67 | Prem Melville, Raymond J. Mooney: Constructing Diverse Classifier Ensembles using Artificial Training Examples. IJCAI 2003: 505-512 | |
66 | EE | Mikhail Bilenko, Raymond J. Mooney: Adaptive duplicate detection using learnable string similarity measures. KDD 2003: 39-48 |
65 | EE | Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep Ravikumar, Stephen E. Fienberg: Adaptive Name Matching in Information Integration. IEEE Intelligent Systems 18(5): 16-23 (2003) |
64 | EE | Cynthia A. Thompson, Raymond J. Mooney: Acquiring Word-Meaning Mappings for Natural Language Interfaces. J. Artif. Intell. Res. (JAIR) 18: 1-44 (2003) |
63 | EE | Mary Elaine Califf, Raymond J. Mooney: Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction. Journal of Machine Learning Research 4: 177-210 (2003) |
2002 | ||
62 | Prem Melville, Raymond J. Mooney, Ramadass Nagarajan: Content-Boosted Collaborative Filtering for Improved Recommendations. AAAI/IAAI 2002: 187-192 | |
61 | EE | Un Yong Nahm, Raymond J. Mooney: Mining soft-matching association rules. CIKM 2002: 681-683 |
60 | Sugato Basu, Arindam Banerjee, Raymond J. Mooney: Semi-supervised Clustering by Seeding. ICML 2002: 27-34 | |
2001 | ||
59 | EE | Lappoon R. Tang, Raymond J. Mooney: Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing. ECML 2001: 466-477 |
58 | Un Yong Nahm, Raymond J. Mooney: Mining Soft-Matching Rules from Textual Data. IJCAI 2001: 979-986 | |
57 | EE | Sugato Basu, Raymond J. Mooney, Krupakar V. Pasupuleti, Joydeep Ghosh: Evaluating the novelty of text-mined rules using lexical knowledge. KDD 2001: 233-238 |
2000 | ||
56 | Un Yong Nahm, Raymond J. Mooney: A Mutually Beneficial Integration of Data Mining and Information Extraction. AAAI/IAAI 2000: 627-632 | |
55 | EE | Raymond J. Mooney, Loriene Roy: Content-based book recommending using learning for text categorization. ACM DL 2000: 195-204 |
1999 | ||
54 | Mary Elaine Califf, Raymond J. Mooney: Relational Learning of Pattern-Match Rules for Information Extraction. AAAI/IAAI 1999: 328-334 | |
53 | Cynthia A. Thompson, Raymond J. Mooney: Automatic Construction of Semantic Lexicons for Learning Natural Language Interfaces. AAAI/IAAI 1999: 487-493 | |
52 | Cynthia A. Thompson, Mary Elaine Califf, Raymond J. Mooney: Active Learning for Natural Language Parsing and Information Extraction. ICML 1999: 406-414 | |
51 | EE | Raymond J. Mooney: Learning for Semantic Interpretation: Scaling Up without Dumbing Down. Learning Language in Logic 1999: 57-66 |
50 | EE | Raymond J. Mooney, Loriene Roy: Content-Based Book Recommending Using Learning for Text Categorization CoRR cs.DL/9902011: (1999) |
49 | Claire Cardie, Raymond J. Mooney: Guest Editors' Introduction: Machine Learning and Natural Language. Machine Learning 34(1-3): 5-9 (1999) | |
1998 | ||
48 | Sowmya Ramachandran, Raymond J. Mooney: Theory Refinement of Bayesian Networks with Hidden Variables. ICML 1998: 454-462 | |
47 | Mary Elaine Califf, Raymond J. Mooney: Advantages of Decision Lists and Implicit Negatives in Inductive Logic Programming. New Generation Comput. 16(3): 263-281 (1998) | |
1997 | ||
46 | Ulf Hermjakob, Raymond J. Mooney: Learning Parse and Translation Decisions from Examples with Rich Context. ACL 1997: 482-489 | |
45 | Tara A. Estlin, Raymond J. Mooney: Learning to Improve both Efficiency and Quality of Planning. IJCAI 1997: 1227-1233 | |
44 | Eric Brill, Raymond J. Mooney: An Overview of Empirical Natural Language Processing. AI Magazine 18(4): 13-24 (1997) | |
43 | EE | Ulf Hermjakob, Raymond J. Mooney: Learning Parse and Translation Decisions From Examples With Rich Context CoRR cmp-lg/9706002: (1997) |
1996 | ||
42 | Paul T. Baffes, Raymond J. Mooney: A Novel Application of Theory Refinement to Student Modeling. AAAI/IAAI, Vol. 1 1996: 403-408 | |
41 | Tara A. Estlin, Raymond J. Mooney: Multi-Strategy Learning of Search Control for Partial-Order Planning. AAAI/IAAI, Vol. 1 1996: 843-848 | |
40 | John M. Zelle, Raymond J. Mooney: Learning to Parse Database Queries Using Inductive Logic Programming. AAAI/IAAI, Vol. 2 1996: 1050-1055 | |
39 | Siddarth Subramanian, Raymond J. Mooney: Qualitative Multiple-Fault Diagnosis of Continuous Dynamic Systems Using Behavioral Modes. AAAI/IAAI, Vol. 2 1996: 965-970 | |
38 | Raymond J. Mooney: Inductive Logic Programming for Natural Language Processing. Inductive Logic Programming Workshop 1996: 3-22 | |
37 | EE | Raymond J. Mooney: Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning CoRR cmp-lg/9612001: (1996) |
1995 | ||
36 | John M. Zelle, Raymond J. Mooney: Comparative results on using inductive logic programming for corpus-based parser construction. Learning for Natural Language Processing 1995: 355-369 | |
35 | Raymond J. Mooney, Mary Elaine Califf: Learning the past tense of English verbs using inductive logic programming. Learning for Natural Language Processing 1995: 370-384 | |
34 | EE | Raymond J. Mooney, Mary Elaine Califf: Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs CoRR abs/cs/9506102: (1995) |
33 | Raymond J. Mooney, Mary Elaine Califf: Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs. J. Artif. Intell. Res. (JAIR) 3: 1-24 (1995) | |
32 | Raymond J. Mooney: Encouraging Experimental Results on Learning CNF. Machine Learning 19(1): 79-92 (1995) | |
31 | Bradley L. Richards, Raymond J. Mooney: Automated Refinement of First-Order Horn-Clause Domain Theories. Machine Learning 19(2): 95-131 (1995) | |
1994 | ||
30 | Cynthia A. Thompson, Raymond J. Mooney: Inductive Learning For Abductive Diagnosis. AAAI 1994: 664-669 | |
29 | John M. Zelle, Raymond J. Mooney: Inducing Deterministic Prolog Parsers from Treebanks: A Machine Learning Approach. AAAI 1994: 748-753 | |
28 | J. Jeffrey Mahoney, Raymond J. Mooney: Comparing Methods for Refining Certainty-Factor Rule-Bases. ICML 1994: 173-180 | |
27 | John M. Zelle, Raymond J. Mooney, Joshua B. Konvisser: Combining Top-down and Bottom-up Techniques in Inductive Logic Programming. ICML 1994: 343-351 | |
26 | Dirk Ourston, Raymond J. Mooney: Theory Refinement Combining Analytical and Empirical Methods. Artif. Intell. 66(2): 273-309 (1994) | |
25 | Raymond J. Mooney, John M. Zelle: Integrating ILP and EBL. SIGART Bulletin 5(1): 12-21 (1994) | |
1993 | ||
24 | John M. Zelle, Raymond J. Mooney: Learning Semantic Grammars with Constructive Inductive Logic Programming. AAAI 1993: 817-822 | |
23 | John M. Zelle, Raymond J. Mooney: Combining FOIL and EBG to Speed-up Logic Programs. IJCAI 1993: 1106-1113 | |
22 | Paul T. Baffes, Raymond J. Mooney: Symbolic Revision of Theories with M-of-N Rules. IJCAI 1993: 1135-1142 | |
21 | Paul T. Baffes, Raymond J. Mooney: Extending Theory Refinement to M-of-N Rules. Informatica (Slovenia) 17(4): (1993) | |
20 | Raymond J. Mooney: Induction Over the Unexplained: Using Overly-General Domain Theories to Aid Concept Learning. Machine Learning 10: 79-110 (1993) | |
1992 | ||
19 | Bradley L. Richards, Raymond J. Mooney: Learning Relations by Pathfinding. AAAI 1992: 50-55 | |
18 | Hwee Tou Ng, Raymond J. Mooney: Abductive Plan Recognition and Diagnosis: A Comprehensive Empirical Evaluation. KR 1992: 499-508 | |
17 | EE | J. Jeffrey Mahoney, Raymond J. Mooney: Combining Neural and Symbolic Learning to Revise Probabilistic Rule Bases. NIPS 1992: 107-114 |
1991 | ||
16 | Hwee Tou Ng, Raymond J. Mooney: An Efficient First-Order Horn-Clause Abduction System Based on the ATMS. AAAI 1991: 494-499 | |
15 | Raymond J. Mooney, Dirk Ourston: Constructive Induction in Theory Refinement. ML 1991: 178-182 | |
14 | Bradley L. Richards, Raymond J. Mooney: First-Order Theory Revision. ML 1991: 447-451 | |
13 | Dirk Ourston, Raymond J. Mooney: Improving Shared Rules in Multiple Category Domain Theories. ML 1991: 534-538 | |
12 | Jude W. Shavlik, Raymond J. Mooney, Geoffrey G. Towell: Symbolic and Neural Learning Algorithms: An Experimental Comparison. Machine Learning 6: 111-143 (1991) | |
1990 | ||
11 | Hwee Tou Ng, Raymond J. Mooney: On the Role of Coherence in Abductive Explanation. AAAI 1990: 337-342 | |
10 | Dirk Ourston, Raymond J. Mooney: Changing the Rules: A Comprehensive Approach to Theory Refinement. AAAI 1990: 815-820 | |
9 | Raymond J. Mooney: Learning Plan Schemata From Observation: Explanation-Based Learning for Plan Recognition. Cognitive Science 14(4): 483-509 (1990) | |
1989 | ||
8 | Raymond J. Mooney: The Effect of Rule Use on the Utility of Explanation-Based Learning. IJCAI 1989: 725-730 | |
7 | Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell, Alan Gove: An Experimental Comparison of Symbolic and Connectionist Learning Algorithms. IJCAI 1989: 775-780 | |
6 | Douglas H. Fisher, Kathleen B. McKusick, Raymond J. Mooney, Jude W. Shavlik, Geoffrey G. Towell: Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems. ML 1989: 169-173 | |
5 | Raymond J. Mooney, Dirk Ourston: Induction Over the Unexplained: Integrated Learning of Concepts with Both Explainable and Conventional Aspects. ML 1989: 5-7 | |
1988 | ||
4 | Raymond J. Mooney: Generalizing the Order of Operators in Macro-Operators. ML 1988: 270-283 | |
1986 | ||
3 | Raymond J. Mooney, Scott Bennett: A Domain Independent Explanation-Based Generalizer. AAAI 1986: 551-555 | |
2 | Gerald DeJong, Raymond J. Mooney: Explanation-Based Learning: An Alternative View. Machine Learning 1(2): 145-176 (1986) | |
1985 | ||
1 | Raymond J. Mooney, Gerald DeJong: Learning Schemata for Natural Language Processing. IJCAI 1985: 681-687 |