2008 | ||
---|---|---|
92 | EE | Erkki Oja: Oja learning rule. Scholarpedia 3(3): 3612 (2008) |
2007 | ||
91 | EE | Petr Tichavský, Zbynek Koldovský, Erkki Oja: Speed and Accuracy Enhancement of Linear ICA Techniques Using Rational Nonlinear Functions. ICA 2007: 285-292 |
90 | EE | Amaury Lendasse, Erkki Oja, Olli Simula, Michel Verleysen: Time series prediction competition: The CATS benchmark. Neurocomputing 70(13-15): 2325-2329 (2007) |
2006 | ||
89 | Stefanos D. Kollias, Andreas Stafylopatis, Wlodzislaw Duch, Erkki Oja: Artificial Neural Networks - ICANN 2006, 16th International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part I Springer 2006 | |
88 | Stefanos D. Kollias, Andreas Stafylopatis, Wlodzislaw Duch, Erkki Oja: Artificial Neural Networks - ICANN 2006, 16th International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part II Springer 2006 | |
87 | EE | Sergey Borisov, Alexander Ilin, Ricardo Vigário, Erkki Oja: Comparison of BSS Methods for the Detection of alpha-Activity Components in EEG. ICA 2006: 430-437 |
86 | EE | Scott C. Douglas, Zhijian Yuan, Erkki Oja: Average Convergence Behavior of the FastICA Algorithm for Blind Source Separation. ICA 2006: 790-798 |
85 | EE | Alexander Ilin, Harri Valpola, Erkki Oja: Extraction of Components with Structured Variance. IJCNN 2006: 5110-5117 |
84 | EE | Jussi Pakkanen, Jukka Iivarinen, Erkki Oja: The evolving tree-analysis and applications. IEEE Transactions on Neural Networks 17(3): 591-603 (2006) |
83 | EE | Zbynek Koldovský, Petr Tichavský, Erkki Oja: Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound. IEEE Transactions on Neural Networks 17(5): 1265-1277 (2006) |
82 | EE | Erkki Oja, Zhijian Yuan: The FastICA Algorithm Revisited: Convergence Analysis. IEEE Transactions on Neural Networks 17(6): 1370-1381 (2006) |
81 | EE | Petr Tichavský, Zbynek Koldovský, Erkki Oja: Performance analysis of the FastICA algorithm and Crame/spl acute/r-rao bounds for linear independent component analysis. IEEE Transactions on Signal Processing 54(4): 1189-1203 (2006) |
80 | EE | K. Raju, Tapani Ristaniemi, Juha Karhunen, Erkki Oja: Jammer suppression in DS-CDMA arrays using independent component analysis. IEEE Transactions on Wireless Communications 5(1): 77-82 (2006) |
79 | EE | Alexander Ilin, Harri Valpola, Erkki Oja: Exploratory analysis of climate data using source separation methods. Neural Networks 19(2): 155-167 (2006) |
2005 | ||
78 | Wlodzislaw Duch, Janusz Kacprzyk, Erkki Oja, Slawomir Zadrozny: Artificial Neural Networks: Biological Inspirations - ICANN 2005, 15th International Conference, Warsaw, Poland, September 11-15, 2005, Proceedings, Part I Springer 2005 | |
77 | Wlodzislaw Duch, Janusz Kacprzyk, Erkki Oja, Slawomir Zadrozny: Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, 15th International Conference, Warsaw, Poland, September 11-15, 2005, Proceedings, Part II Springer 2005 | |
76 | EE | Zhijian Yuan, Erkki Oja: Projective Nonnegative Matrix Factorization for Image Compression and Feature Extraction. SCIA 2005: 333-342 |
2004 | ||
75 | EE | Timo Ojala, Markus Koskela, Esa Matinmikko, Mika Rautiainen, Jorma Laaksonen, Erkki Oja: Task-Based User Evaluation of Content-Based Image Database Browsing Systems. CIVR 2004: 234-242 |
74 | EE | Markus Koskela, Jorma Laaksonen, Erkki Oja: Use of Image Subset Features in Image Retrieval with Self-Organizing Maps. CIVR 2004: 508-516 |
73 | EE | Zhijian Yuan, Erkki Oja: A FastICA Algorithm for Non-negative Independent Component Analysis. ICA 2004: 1-8 |
72 | EE | Erkki Oja: Applications of Independent Component Analysis. ICONIP 2004: 1044-1051 |
71 | EE | Markus Koskela, Jorma Laaksonen, Erkki Oja: Entropy-Based Measures for Clustering and SOM Topology Preservation Applied to Content-Based Image Indexing and Retrieval. ICPR (2) 2004: 1005-1009 |
70 | EE | Erkki Oja: Finding Clusters and Components by Unsupervised Learning. SSPR/SPR 2004: 1-15 |
69 | EE | Erkki Oja, Mark D. Plumbley: Blind Separation of Positive Sources by Globally Convergent Gradient Search. Neural Computation 16(9): 1811-1825 (2004) |
68 | EE | Jorma Laaksonen, Markus Koskela, Erkki Oja: Class distributions on SOM surfaces for feature extraction and object retrieval. Neural Networks 17(8-9): 1121-1133 (2004) |
67 | EE | Jussi Pakkanen, Jukka Iivarinen, Erkki Oja: The Evolving Tree - A Novel Self-Organizing Network for Data Analysis. Neural Processing Letters 20(3): 199-211 (2004) |
66 | EE | Erkki Oja, Stefan Harmeling, Luis B. Almeida: Independent component analysis and beyond. Signal Processing 84(2): 215-216 (2004) |
2003 | ||
65 | Okyay Kaynak, Ethem Alpaydin, Erkki Oja, Lei Xu: Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP 2003, Joint International Conference ICANN/ICONIP 2003, Istanbul, Turkey, June 26-29, 2003, Proceedings Springer 2003 | |
64 | EE | Matti Aksela, Ramunas Girdziusas, Jorma Laaksonen, Erkki Oja, Jari Kangas: Methods for adaptive combination of classifiers with application to recognition of handwritten characters. IJDAR 6(1): 23-41 (2003) |
63 | EE | Te-Won Lee, Jean-François Cardoso, Erkki Oja, Shun-ichi Amari: Introduction to Special Issue on Independent Components Analysis. Journal of Machine Learning Research 4: 1175-1176 (2003) |
62 | EE | Maria Funaro, Erkki Oja, Harri Valpola: Independent component analysis for artefact separation in astrophysical images. Neural Networks 16(3-4): 469-478 (2003) |
2002 | ||
61 | EE | Erkki Oja: Finding Hidden Factors Using Independent Component Analysis. ECML 2002: 505 |
60 | Erkki Oja: Independent Component Analisys. HIS 2002: 3 | |
59 | EE | Markus Koskela, Jorma Laaksonen, Erkki Oja: Implementing Relevance Feedback as Convolutions of Local Neighborhoods on Self-Organizing Maps. ICANN 2002: 981-986 |
58 | EE | Markus Koskela, Jorma Laaksonen, Erkki Oja: Using MPEG-7 Descriptors in Image Retrieval with Self-Organizing Maps. ICPR (2) 2002: 1049-1052 |
57 | EE | Erkki Oja: Finding Hidden Factors UsingIndependent Component Analysis. PKDD 2002: 488 |
56 | EE | Markus Koskela, Jorma Laaksonen, Erkki Oja: MPEG-7 Descriptors in Content-Based Image Retrieval with PicSOM System. VISUAL 2002: 247-258 |
55 | Erkki Oja: Unsupervised learning in neural computation. Theor. Comput. Sci. 287(1): 187-207 (2002) | |
2001 | ||
54 | EE | Matti Aksela, Jorma Laaksonen, Erkki Oja, Jari Kangas: Application of Adaptive Committee Classifiers in On-Line Character Recognition. ICAPR 2001: 270-279 |
53 | EE | Vuokko Vuori, Jorma Laaksonen, Erkki Oja, Jari Kangas: Speeding Up On-line Recognition of Handwritten Characters by Pruning the Prototype Set. ICDAR 2001: 501- |
52 | EE | Matti Aksela, Jorma Laaksonen, Erkki Oja, Jari Kangas: Rejection Methods for an Adaptive Committee Classifier. ICDAR 2001: 982-986 |
51 | EE | Vuokko Vuori, Jorma Laaksonen, Erkki Oja, Jari Kangas: Experiments with adaptation strategies for a prototype-based recognition system for isolated handwritten characters. IJDAR 3(3): 150-159 (2001) |
50 | EE | Visa Koivunen, Mihai Enescu, Erkki Oja: Adaptive Algorithm for Blind Separation from Noisy Time-Varying Mixtures. Neural Computation 13(10): 2339-2357 (2001) |
49 | EE | Jorma Laaksonen, Markus Koskela, Sami Laakso, Erkki Oja: Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval. Pattern Anal. Appl. 4(2-3): 140-152 (2001) |
48 | EE | Timo Ojala, Kimmo Valkealahti, Erkki Oja, Matti Pietikäinen: Texture discrimination with multidimensional distributions of signed gray-level differences. Pattern Recognition 34(3): 727-739 (2001) |
2000 | ||
47 | EE | Vuokko Vuori, Jorma Laaksonen, Erkki Oja, Jari Kangas: Controlling On-Line Adaptation of a Prototype-Based Classifier for Handwritten Characters. ICPR 2000: 2331-2334 |
46 | EE | Sami S. Brandt, Jorma Laaksonen, Erkki Oja: Statistical Shape Features in Content-Based Image Retrieval. ICPR 2000: 6062-6066 |
45 | EE | Markus Koskela, Jorma Laaksonen, Sami Laakso, Erkki Oja: Evaluating the Performance of Content-Based Image Retrieval Systems. VISUAL 2000: 430-441 |
44 | EE | Aapo Hyvärinen, Erkki Oja: Independent component analysis: algorithms and applications. Neural Networks 13(4-5): 411-430 (2000) |
43 | EE | Ricardo Vigário, Erkki Oja: Independence: a new criterion for the analysis of the electromagnetic fields in the global brain? Neural Networks 13(8-9): 891-907 (2000) |
42 | EE | Jorma Laaksonen, Markus Koskela, Sami Laakso, Erkki Oja: PicSOM - content-based image retrieval with self-organizing maps. Pattern Recognition Letters 21(13-14): 1199-1207 (2000) |
1999 | ||
41 | EE | Vuokko Vuori, Jorma Laaksonen, Erkki Oja, Jari Kangas: On-line Adaptation in Recognition of Handwritten Alphanumeric Characters. ICDAR 1999: 792-795 |
40 | EE | Jorma Laaksonen, Matti Aksela, Erkki Oja, Jari Kangas: Dynamically Expanding Context as Committee Adaptation Method in On-Line Recognition of Handwritten Latin Characters. ICDAR 1999: 796-799 |
39 | Ricardo Vigário, Erkki Oja: Independent Component Analysis of Human Brain Waves. IWANN (2) 1999: 238-247 | |
38 | EE | Jorma Laaksonen, Markus Koskela, Erkki Oja: Content-Based Image Retrieval Using Self-Organizing Maps. VISUAL 1999: 541-548 |
37 | EE | Xavier Giannakopoulos, Juha Karhunen, Erkki Oja: An Experimental Comparison of Neural Algorithms for Independent Component Analysis and Blind Separation. Int. J. Neural Syst. 9(2): 99-114 (1999) |
36 | EE | Erkki Oja, Aapo Hyvärinen, Patrik O. Hoyer: Image Feature Extraction and Denoising by Sparse Coding. Pattern Anal. Appl. 2(2): 104-110 (1999) |
1998 | ||
35 | Erkki Oja: Signal Decomposition by Fast ICA. ICONIP 1998: 594-602 | |
34 | Erkki Oja: The Nonlinear PCA Approach to ICA. ICONIP 1998: 725-728 | |
33 | Kimmo Kiviluoto, Erkki Oja: Independent Component Analysis for Parallel Financial Time Series. ICONIP 1998: 895-898 | |
32 | EE | Aapo Hyvärinen, Patrik O. Hoyer, Erkki Oja: Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation. NIPS 1998: 473-479 |
31 | EE | Kimmo Valkealahti, Erkki Oja: Reduced Multidimensional Co-Occurrence Histograms in Texture Classification. IEEE Trans. Pattern Anal. Mach. Intell. 20(1): 90-94 (1998) |
30 | Jorma Laaksonen, Erkki Oja: Learning Subspace Classifiers and Error-Corrective Feature Extraction. IJPRAI 12(4): 423-436 (1998) | |
29 | Kimmo Valkealahti, Erkki Oja: Texture Classification with Single- and Multiresolution Co-Occurrence Maps. IJPRAI 12(4): 437-452 (1998) | |
28 | EE | Erkki Oja: From neural learning to independent components. Neurocomputing 22(1-3): 187-199 (1998) |
27 | EE | Juha Karhunen, Petteri Pajunen, Erkki Oja: The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing 22(1-3): 5-20 (1998) |
1997 | ||
26 | Erkki Oja, Juha Karhunen, Aapo Hyvärinen: From Neural Principal Components to Neural Independent Components. ICANN 1997: 519-528 | |
25 | Erkki Oja, Kimmo Valkealahti: Local Independent Component Analysis by the Self-Organizing Map. ICANN 1997: 553-558 | |
24 | Ricardo Vigário, Veikko Jousmäki, Matti Hämäläinen, Riitta Hari, Erkki Oja: Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings. NIPS 1997 | |
23 | Kimmo Kiviluoto, Erkki Oja: S-Map: A Network with a Simple Self-Organization Algorithm for Generative Topographic Mappings. NIPS 1997 | |
22 | EE | Aapo Hyvärinen, Erkki Oja: A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation 9(7): 1483-1492 (1997) |
21 | EE | Erkki Oja: The nonlinear PCA learning rule in independent component analysis. Neurocomputing 17(1): 25-45 (1997) |
1996 | ||
20 | Jorma Laaksonen, Erkki Oja: Subspace Dimension Selection and Averaged Learning Subspace Method in Handwritten Digit Classification. ICANN 1996: 227-232 | |
19 | Kimmo Valkealahti, Erkki Oja: Optimal Texture Feature Selection for the Co-Occurrence Map. ICANN 1996: 245-250 | |
18 | EE | Aapo Hyvärinen, Erkki Oja: One-unit Learning Rules for Independent Component Analysis. NIPS 1996: 480-486 |
17 | EE | Aapo Hyvärinen, Erkki Oja: Simple Neuron Models for Independent Component Analysis. Int. J. Neural Syst. 7(6): 671-688 (1996) |
16 | EE | Erkki Oja, Liuyue Wang: Robust fitting by nonlinear neural units. Neural Networks 9(3): 435-444 (1996) |
15 | EE | Erkki Oja, Liuyue Wang: Neural fitting: Robustness by anti-Hebbian learning. Neurocomputing 12(2-3): 155-170 (1996) |
14 | EE | Erkki Oja, Kimmo Valkealahti: Co-occurrence map: Quantizing multidimensional texture histograms. Pattern Recognition Letters 17(7): 723-730 (1996) |
13 | EE | Heikki Kälviäinen, Petri Hirvonen, Erkki Oja: Houghtool -- A software package for the use of the Hough transform. Pattern Recognition Letters 17(8): 889-897 (1996) |
1995 | ||
12 | EE | Heikki Kälviäinen, Petri Hirvonen, Lei Xu, Erkki Oja: Probabilistic and non-probabilistic Hough transforms: overview and comparisons. Image Vision Comput. 13(4): 239-252 (1995) |
1994 | ||
11 | Heikki Kälviäinen, Petri Hirvonen, Lei Xu, Erkki Oja: Comparisons of Probabilistic and Non-probabilistic Hough Transforms. ECCV (2) 1994: 351-360 | |
1992 | ||
10 | EE | Lei Xu, Erkki Oja, Ching Y. Suen: Modified Hebbian learning for curve and surface fitting. Neural Networks 5(3): 441-457 (1992) |
9 | EE | Erkki Oja: Principal components, minor components, and linear neural networks. Neural Networks 5(6): 927-935 (1992) |
1991 | ||
8 | EE | Lei Xu, Adam Krzyzak, Erkki Oja: Neural Nets for Dual Subspace Pattern Recognition Method. Int. J. Neural Syst. 2(3): 169-184 (1991) |
1990 | ||
7 | Lei Xu, Erkki Oja: Improved Simulated Annealing, Boltzmann Machine, and Attributed Graph Matching. EURASIP Workshop 1990: 151-160 | |
6 | EE | Pekka Kultanen, Erkki Oja, Lei Xu: Randomized Hough Transform (RHT) in Engineering Drawing Vectorization System. MVA 1990: 173-176 |
5 | EE | Jussi Parkkinen, K. Selkäinaho, Erkki Oja: Detecting texture periodicity from the cooccurrence matrix. Pattern Recognition Letters 11(1): 43-50 (1990) |
4 | EE | Lei Xu, Erkki Oja, Pekka Kultanen: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters 11(5): 331-338 (1990) |
1989 | ||
3 | EE | Erkki Oja: Neural Networks, Principal Components, and Subspaces. Int. J. Neural Syst. 1(1): 61-68 (1989) |
1983 | ||
2 | EE | Erkki Oja, Maija Kuusela: The ALSM algorithm - an improved subspace method of classification. Pattern Recognition 16(4): 421-427 (1983) |
1979 | ||
1 | Erkki Oja: On the Construction of Projectors Using Products of Elementary Matrices. IEEE Trans. Computers 28(1): 65-66 (1979) |