2008 |
92 | EE | Erkki Oja:
Oja learning rule.
Scholarpedia 3(3): 3612 (2008) |
2007 |
91 | EE | Petr Tichavský,
Zbynek Koldovský,
Erkki Oja:
Speed and Accuracy Enhancement of Linear ICA Techniques Using Rational Nonlinear Functions.
ICA 2007: 285-292 |
90 | EE | Amaury Lendasse,
Erkki Oja,
Olli Simula,
Michel Verleysen:
Time series prediction competition: The CATS benchmark.
Neurocomputing 70(13-15): 2325-2329 (2007) |
2006 |
89 | | Stefanos D. Kollias,
Andreas Stafylopatis,
Wlodzislaw Duch,
Erkki Oja:
Artificial Neural Networks - ICANN 2006, 16th International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part I
Springer 2006 |
88 | | Stefanos D. Kollias,
Andreas Stafylopatis,
Wlodzislaw Duch,
Erkki Oja:
Artificial Neural Networks - ICANN 2006, 16th International Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part II
Springer 2006 |
87 | EE | Sergey Borisov,
Alexander Ilin,
Ricardo Vigário,
Erkki Oja:
Comparison of BSS Methods for the Detection of alpha-Activity Components in EEG.
ICA 2006: 430-437 |
86 | EE | Scott C. Douglas,
Zhijian Yuan,
Erkki Oja:
Average Convergence Behavior of the FastICA Algorithm for Blind Source Separation.
ICA 2006: 790-798 |
85 | EE | Alexander Ilin,
Harri Valpola,
Erkki Oja:
Extraction of Components with Structured Variance.
IJCNN 2006: 5110-5117 |
84 | EE | Jussi Pakkanen,
Jukka Iivarinen,
Erkki Oja:
The evolving tree-analysis and applications.
IEEE Transactions on Neural Networks 17(3): 591-603 (2006) |
83 | EE | Zbynek Koldovský,
Petr Tichavský,
Erkki Oja:
Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the CramÉr-Rao Lower Bound.
IEEE Transactions on Neural Networks 17(5): 1265-1277 (2006) |
82 | EE | Erkki Oja,
Zhijian Yuan:
The FastICA Algorithm Revisited: Convergence Analysis.
IEEE Transactions on Neural Networks 17(6): 1370-1381 (2006) |
81 | EE | Petr Tichavský,
Zbynek Koldovský,
Erkki Oja:
Performance analysis of the FastICA algorithm and Crame/spl acute/r-rao bounds for linear independent component analysis.
IEEE Transactions on Signal Processing 54(4): 1189-1203 (2006) |
80 | EE | K. Raju,
Tapani Ristaniemi,
Juha Karhunen,
Erkki Oja:
Jammer suppression in DS-CDMA arrays using independent component analysis.
IEEE Transactions on Wireless Communications 5(1): 77-82 (2006) |
79 | EE | Alexander Ilin,
Harri Valpola,
Erkki Oja:
Exploratory analysis of climate data using source separation methods.
Neural Networks 19(2): 155-167 (2006) |
2005 |
78 | | Wlodzislaw Duch,
Janusz Kacprzyk,
Erkki Oja,
Slawomir Zadrozny:
Artificial Neural Networks: Biological Inspirations - ICANN 2005, 15th International Conference, Warsaw, Poland, September 11-15, 2005, Proceedings, Part I
Springer 2005 |
77 | | Wlodzislaw Duch,
Janusz Kacprzyk,
Erkki Oja,
Slawomir Zadrozny:
Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, 15th International Conference, Warsaw, Poland, September 11-15, 2005, Proceedings, Part II
Springer 2005 |
76 | EE | Zhijian Yuan,
Erkki Oja:
Projective Nonnegative Matrix Factorization for Image Compression and Feature Extraction.
SCIA 2005: 333-342 |
2004 |
75 | EE | Timo Ojala,
Markus Koskela,
Esa Matinmikko,
Mika Rautiainen,
Jorma Laaksonen,
Erkki Oja:
Task-Based User Evaluation of Content-Based Image Database Browsing Systems.
CIVR 2004: 234-242 |
74 | EE | Markus Koskela,
Jorma Laaksonen,
Erkki Oja:
Use of Image Subset Features in Image Retrieval with Self-Organizing Maps.
CIVR 2004: 508-516 |
73 | EE | Zhijian Yuan,
Erkki Oja:
A FastICA Algorithm for Non-negative Independent Component Analysis.
ICA 2004: 1-8 |
72 | EE | Erkki Oja:
Applications of Independent Component Analysis.
ICONIP 2004: 1044-1051 |
71 | EE | Markus Koskela,
Jorma Laaksonen,
Erkki Oja:
Entropy-Based Measures for Clustering and SOM Topology Preservation Applied to Content-Based Image Indexing and Retrieval.
ICPR (2) 2004: 1005-1009 |
70 | EE | Erkki Oja:
Finding Clusters and Components by Unsupervised Learning.
SSPR/SPR 2004: 1-15 |
69 | EE | Erkki Oja,
Mark D. Plumbley:
Blind Separation of Positive Sources by Globally Convergent Gradient Search.
Neural Computation 16(9): 1811-1825 (2004) |
68 | EE | Jorma Laaksonen,
Markus Koskela,
Erkki Oja:
Class distributions on SOM surfaces for feature extraction and object retrieval.
Neural Networks 17(8-9): 1121-1133 (2004) |
67 | EE | Jussi Pakkanen,
Jukka Iivarinen,
Erkki Oja:
The Evolving Tree - A Novel Self-Organizing Network for Data Analysis.
Neural Processing Letters 20(3): 199-211 (2004) |
66 | EE | Erkki Oja,
Stefan Harmeling,
Luis B. Almeida:
Independent component analysis and beyond.
Signal Processing 84(2): 215-216 (2004) |
2003 |
65 | | Okyay Kaynak,
Ethem Alpaydin,
Erkki Oja,
Lei Xu:
Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP 2003, Joint International Conference ICANN/ICONIP 2003, Istanbul, Turkey, June 26-29, 2003, Proceedings
Springer 2003 |
64 | EE | Matti Aksela,
Ramunas Girdziusas,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
Methods for adaptive combination of classifiers with application to recognition of handwritten characters.
IJDAR 6(1): 23-41 (2003) |
63 | EE | Te-Won Lee,
Jean-François Cardoso,
Erkki Oja,
Shun-ichi Amari:
Introduction to Special Issue on Independent Components Analysis.
Journal of Machine Learning Research 4: 1175-1176 (2003) |
62 | EE | Maria Funaro,
Erkki Oja,
Harri Valpola:
Independent component analysis for artefact separation in astrophysical images.
Neural Networks 16(3-4): 469-478 (2003) |
2002 |
61 | EE | Erkki Oja:
Finding Hidden Factors Using Independent Component Analysis.
ECML 2002: 505 |
60 | | Erkki Oja:
Independent Component Analisys.
HIS 2002: 3 |
59 | EE | Markus Koskela,
Jorma Laaksonen,
Erkki Oja:
Implementing Relevance Feedback as Convolutions of Local Neighborhoods on Self-Organizing Maps.
ICANN 2002: 981-986 |
58 | EE | Markus Koskela,
Jorma Laaksonen,
Erkki Oja:
Using MPEG-7 Descriptors in Image Retrieval with Self-Organizing Maps.
ICPR (2) 2002: 1049-1052 |
57 | EE | Erkki Oja:
Finding Hidden Factors UsingIndependent Component Analysis.
PKDD 2002: 488 |
56 | EE | Markus Koskela,
Jorma Laaksonen,
Erkki Oja:
MPEG-7 Descriptors in Content-Based Image Retrieval with PicSOM System.
VISUAL 2002: 247-258 |
55 | | Erkki Oja:
Unsupervised learning in neural computation.
Theor. Comput. Sci. 287(1): 187-207 (2002) |
2001 |
54 | EE | Matti Aksela,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
Application of Adaptive Committee Classifiers in On-Line Character Recognition.
ICAPR 2001: 270-279 |
53 | EE | Vuokko Vuori,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
Speeding Up On-line Recognition of Handwritten Characters by Pruning the Prototype Set.
ICDAR 2001: 501- |
52 | EE | Matti Aksela,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
Rejection Methods for an Adaptive Committee Classifier.
ICDAR 2001: 982-986 |
51 | EE | Vuokko Vuori,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
Experiments with adaptation strategies for a prototype-based recognition system for isolated handwritten characters.
IJDAR 3(3): 150-159 (2001) |
50 | EE | Visa Koivunen,
Mihai Enescu,
Erkki Oja:
Adaptive Algorithm for Blind Separation from Noisy Time-Varying Mixtures.
Neural Computation 13(10): 2339-2357 (2001) |
49 | EE | Jorma Laaksonen,
Markus Koskela,
Sami Laakso,
Erkki Oja:
Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval.
Pattern Anal. Appl. 4(2-3): 140-152 (2001) |
48 | EE | Timo Ojala,
Kimmo Valkealahti,
Erkki Oja,
Matti Pietikäinen:
Texture discrimination with multidimensional distributions of signed gray-level differences.
Pattern Recognition 34(3): 727-739 (2001) |
2000 |
47 | EE | Vuokko Vuori,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
Controlling On-Line Adaptation of a Prototype-Based Classifier for Handwritten Characters.
ICPR 2000: 2331-2334 |
46 | EE | Sami S. Brandt,
Jorma Laaksonen,
Erkki Oja:
Statistical Shape Features in Content-Based Image Retrieval.
ICPR 2000: 6062-6066 |
45 | EE | Markus Koskela,
Jorma Laaksonen,
Sami Laakso,
Erkki Oja:
Evaluating the Performance of Content-Based Image Retrieval Systems.
VISUAL 2000: 430-441 |
44 | EE | Aapo Hyvärinen,
Erkki Oja:
Independent component analysis: algorithms and applications.
Neural Networks 13(4-5): 411-430 (2000) |
43 | EE | Ricardo Vigário,
Erkki Oja:
Independence: a new criterion for the analysis of the electromagnetic fields in the global brain?
Neural Networks 13(8-9): 891-907 (2000) |
42 | EE | Jorma Laaksonen,
Markus Koskela,
Sami Laakso,
Erkki Oja:
PicSOM - content-based image retrieval with self-organizing maps.
Pattern Recognition Letters 21(13-14): 1199-1207 (2000) |
1999 |
41 | EE | Vuokko Vuori,
Jorma Laaksonen,
Erkki Oja,
Jari Kangas:
On-line Adaptation in Recognition of Handwritten Alphanumeric Characters.
ICDAR 1999: 792-795 |
40 | EE | Jorma Laaksonen,
Matti Aksela,
Erkki Oja,
Jari Kangas:
Dynamically Expanding Context as Committee Adaptation Method in On-Line Recognition of Handwritten Latin Characters.
ICDAR 1999: 796-799 |
39 | | Ricardo Vigário,
Erkki Oja:
Independent Component Analysis of Human Brain Waves.
IWANN (2) 1999: 238-247 |
38 | EE | Jorma Laaksonen,
Markus Koskela,
Erkki Oja:
Content-Based Image Retrieval Using Self-Organizing Maps.
VISUAL 1999: 541-548 |
37 | EE | Xavier Giannakopoulos,
Juha Karhunen,
Erkki Oja:
An Experimental Comparison of Neural Algorithms for Independent Component Analysis and Blind Separation.
Int. J. Neural Syst. 9(2): 99-114 (1999) |
36 | EE | Erkki Oja,
Aapo Hyvärinen,
Patrik O. Hoyer:
Image Feature Extraction and Denoising by Sparse Coding.
Pattern Anal. Appl. 2(2): 104-110 (1999) |
1998 |
35 | | Erkki Oja:
Signal Decomposition by Fast ICA.
ICONIP 1998: 594-602 |
34 | | Erkki Oja:
The Nonlinear PCA Approach to ICA.
ICONIP 1998: 725-728 |
33 | | Kimmo Kiviluoto,
Erkki Oja:
Independent Component Analysis for Parallel Financial Time Series.
ICONIP 1998: 895-898 |
32 | EE | Aapo Hyvärinen,
Patrik O. Hoyer,
Erkki Oja:
Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation.
NIPS 1998: 473-479 |
31 | EE | Kimmo Valkealahti,
Erkki Oja:
Reduced Multidimensional Co-Occurrence Histograms in Texture Classification.
IEEE Trans. Pattern Anal. Mach. Intell. 20(1): 90-94 (1998) |
30 | | Jorma Laaksonen,
Erkki Oja:
Learning Subspace Classifiers and Error-Corrective Feature Extraction.
IJPRAI 12(4): 423-436 (1998) |
29 | | Kimmo Valkealahti,
Erkki Oja:
Texture Classification with Single- and Multiresolution Co-Occurrence Maps.
IJPRAI 12(4): 437-452 (1998) |
28 | EE | Erkki Oja:
From neural learning to independent components.
Neurocomputing 22(1-3): 187-199 (1998) |
27 | EE | Juha Karhunen,
Petteri Pajunen,
Erkki Oja:
The nonlinear PCA criterion in blind source separation: Relations with other approaches.
Neurocomputing 22(1-3): 5-20 (1998) |
1997 |
26 | | Erkki Oja,
Juha Karhunen,
Aapo Hyvärinen:
From Neural Principal Components to Neural Independent Components.
ICANN 1997: 519-528 |
25 | | Erkki Oja,
Kimmo Valkealahti:
Local Independent Component Analysis by the Self-Organizing Map.
ICANN 1997: 553-558 |
24 | | Ricardo Vigário,
Veikko Jousmäki,
Matti Hämäläinen,
Riitta Hari,
Erkki Oja:
Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings.
NIPS 1997 |
23 | | Kimmo Kiviluoto,
Erkki Oja:
S-Map: A Network with a Simple Self-Organization Algorithm for Generative Topographic Mappings.
NIPS 1997 |
22 | EE | Aapo Hyvärinen,
Erkki Oja:
A Fast Fixed-Point Algorithm for Independent Component Analysis.
Neural Computation 9(7): 1483-1492 (1997) |
21 | EE | Erkki Oja:
The nonlinear PCA learning rule in independent component analysis.
Neurocomputing 17(1): 25-45 (1997) |
1996 |
20 | | Jorma Laaksonen,
Erkki Oja:
Subspace Dimension Selection and Averaged Learning Subspace Method in Handwritten Digit Classification.
ICANN 1996: 227-232 |
19 | | Kimmo Valkealahti,
Erkki Oja:
Optimal Texture Feature Selection for the Co-Occurrence Map.
ICANN 1996: 245-250 |
18 | EE | Aapo Hyvärinen,
Erkki Oja:
One-unit Learning Rules for Independent Component Analysis.
NIPS 1996: 480-486 |
17 | EE | Aapo Hyvärinen,
Erkki Oja:
Simple Neuron Models for Independent Component Analysis.
Int. J. Neural Syst. 7(6): 671-688 (1996) |
16 | EE | Erkki Oja,
Liuyue Wang:
Robust fitting by nonlinear neural units.
Neural Networks 9(3): 435-444 (1996) |
15 | EE | Erkki Oja,
Liuyue Wang:
Neural fitting: Robustness by anti-Hebbian learning.
Neurocomputing 12(2-3): 155-170 (1996) |
14 | EE | Erkki Oja,
Kimmo Valkealahti:
Co-occurrence map: Quantizing multidimensional texture histograms.
Pattern Recognition Letters 17(7): 723-730 (1996) |
13 | EE | Heikki Kälviäinen,
Petri Hirvonen,
Erkki Oja:
Houghtool -- A software package for the use of the Hough transform.
Pattern Recognition Letters 17(8): 889-897 (1996) |
1995 |
12 | EE | Heikki Kälviäinen,
Petri Hirvonen,
Lei Xu,
Erkki Oja:
Probabilistic and non-probabilistic Hough transforms: overview and comparisons.
Image Vision Comput. 13(4): 239-252 (1995) |
1994 |
11 | | Heikki Kälviäinen,
Petri Hirvonen,
Lei Xu,
Erkki Oja:
Comparisons of Probabilistic and Non-probabilistic Hough Transforms.
ECCV (2) 1994: 351-360 |
1992 |
10 | EE | Lei Xu,
Erkki Oja,
Ching Y. Suen:
Modified Hebbian learning for curve and surface fitting.
Neural Networks 5(3): 441-457 (1992) |
9 | EE | Erkki Oja:
Principal components, minor components, and linear neural networks.
Neural Networks 5(6): 927-935 (1992) |
1991 |
8 | EE | Lei Xu,
Adam Krzyzak,
Erkki Oja:
Neural Nets for Dual Subspace Pattern Recognition Method.
Int. J. Neural Syst. 2(3): 169-184 (1991) |
1990 |
7 | | Lei Xu,
Erkki Oja:
Improved Simulated Annealing, Boltzmann Machine, and Attributed Graph Matching.
EURASIP Workshop 1990: 151-160 |
6 | EE | Pekka Kultanen,
Erkki Oja,
Lei Xu:
Randomized Hough Transform (RHT) in Engineering Drawing Vectorization System.
MVA 1990: 173-176 |
5 | EE | Jussi Parkkinen,
K. Selkäinaho,
Erkki Oja:
Detecting texture periodicity from the cooccurrence matrix.
Pattern Recognition Letters 11(1): 43-50 (1990) |
4 | EE | Lei Xu,
Erkki Oja,
Pekka Kultanen:
A new curve detection method: Randomized Hough transform (RHT).
Pattern Recognition Letters 11(5): 331-338 (1990) |
1989 |
3 | EE | Erkki Oja:
Neural Networks, Principal Components, and Subspaces.
Int. J. Neural Syst. 1(1): 61-68 (1989) |
1983 |
2 | EE | Erkki Oja,
Maija Kuusela:
The ALSM algorithm - an improved subspace method of classification.
Pattern Recognition 16(4): 421-427 (1983) |
1979 |
1 | | Erkki Oja:
On the Construction of Projectors Using Products of Elementary Matrices.
IEEE Trans. Computers 28(1): 65-66 (1979) |