2008 |
52 | EE | Lukasz Jelen,
Adam Krzyzak,
Thomas Fevens:
Comparison of Pleomorphic and Structural Features Used for Breast Cancer Malignancy Classification.
Canadian Conference on AI 2008: 138-149 |
51 | EE | Adam Krzyzak,
Dominik Schäfer:
Nonlinear Function Learning Using Radial Basis Function Networks: Convergence and Rates.
ICAISC 2008: 101-110 |
50 | EE | Joanna Rokita,
Adam Krzyzak,
Ching Y. Suen:
Cell Phones Personal Authentication Systems Using Multimodal Biometrics.
ICIAR 2008: 1013-1022 |
49 | EE | Wu Ding,
Ching Y. Suen,
Adam Krzyzak:
A new courtesy amount recognition module of a Check Reading System.
ICPR 2008: 1-4 |
48 | EE | Jian-xiong Dong,
Ching Y. Suen,
Adam Krzyzak:
Effective shrinkage of large multi-class linear svm models for text categorization.
ICPR 2008: 1-4 |
47 | EE | Joanna Rokita,
Adam Krzyzak,
Ching Y. Suen:
Multimodal Biometrics by Face and Hand Images Taken by a Cell Phone Camera.
IJPRAI 22(3): 411-429 (2008) |
2007 |
46 | EE | Shuo Li,
Thomas Fevens,
Adam Krzyzak,
Chao Jin,
Song Li:
Semi-automatic computer aided lesion detection in dental X-rays using variational level set.
Pattern Recognition 40(10): 2861-2873 (2007) |
2006 |
45 | EE | Adam Krzyzak,
Dominik Schäfer:
Nonlinear Function Learning by the Normalized Radial Basis Function Networks.
ICAISC 2006: 46-55 |
44 | EE | Guangyi Chen,
Tien D. Bui,
Adam Krzyzak:
Palmprint Classification using Dual-Tree Complex Wavelets.
ICIP 2006: 2645-2648 |
43 | EE | Guangyi Chen,
Tien D. Bui,
Adam Krzyzak:
Invariant Ridgelet-Fourier Descriptor for Pattern Recognition.
ICPR (2) 2006: 768-771 |
42 | EE | Shuo Li,
Thomas Fevens,
Adam Krzyzak,
Chao Jin,
Song Li:
Fast and Robust Clinical Triple-Region Image Segmentation Using One Level Set Function.
MICCAI (2) 2006: 766-773 |
41 | EE | Guangyi Chen,
Tien D. Bui,
Adam Krzyzak:
Rotation invariant feature extraction using Ridgelet and Fourier transforms.
Pattern Anal. Appl. 9(1): 83-93 (2006) |
2005 |
40 | EE | Jian-xiong Dong,
Dominique Ponson,
Adam Krzyzak,
Ching Y. Suen:
Cursive word skew/slant corrections based on Radon transform.
ICDAR 2005: 478-483 |
39 | EE | Shuo Li,
Thomas Fevens,
Adam Krzyzak,
Chao Jin,
Song Li:
Toward Automatic Computer Aided Dental X-ray Analysis Using Level Set Method.
MICCAI 2005: 670-678 |
38 | EE | Shuo Li,
Thomas Fevens,
Adam Krzyzak,
Song Li:
Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM.
MLDM 2005: 314-324 |
37 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen,
Dominique Ponson:
Low-Level Cursive Word Representation Based on Geometric Decomposition.
MLDM 2005: 590-599 |
36 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen:
Fast SVM Training Algorithm with Decomposition on Very Large Data Sets.
IEEE Trans. Pattern Anal. Mach. Intell. 27(4): 603-618 (2005) |
35 | EE | Adam Krzyzak,
Dominik Schäfer:
Nonparametric regression estimation by normalized radial basis function networks.
IEEE Transactions on Information Theory 51(3): 1003-1010 (2005) |
34 | EE | Guangyi Chen,
Tien D. Bui,
Adam Krzyzak:
Image denoising with neighbour dependency and customized wavelet and threshold.
Pattern Recognition 38(1): 115-124 (2005) |
33 | EE | Guangyi Chen,
Tien D. Bui,
Adam Krzyzak:
Rotation invariant pattern recognition using ridgelets, wavelet cycle-spinning and Fourier features.
Pattern Recognition 38(12): 2314-2322 (2005) |
32 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen:
An improved handwritten Chinese character recognition system using support vector machine.
Pattern Recognition Letters 26(12): 1849-1856 (2005) |
2004 |
31 | | Shuo Li,
Thomas Fevens,
Adam Krzyzak:
A SVM-based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets.
CARS 2004: 207-212 |
30 | EE | Adam Krzyzak,
Ewa Skubalska-Rafajlowicz:
Combining Space-Filling Curves and Radial Basis Function Networks.
ICAISC 2004: 229-234 |
29 | EE | Shuo Li,
Thomas Fevens,
Adam Krzyzak:
Image Segmentation Adapted for Clinical Settings by Combining Pattern Classification and Level Sets.
MICCAI (1) 2004: 160-167 |
2003 |
28 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen:
A Fast Parallel Optimization for Training Support Vector Machine.
MLDM 2003: 96-105 |
27 | | Miroslaw Pawlak,
Ewaryst Rafajlowicz,
Adam Krzyzak:
Postfiltering versus prefiltering for signal recovery from noisy samples.
IEEE Transactions on Information Theory 49(12): 3195-3212 (2003) |
26 | EE | Jian-xiong Dong,
Ching Y. Suen,
Adam Krzyzak:
A Fast SVM Training Algorithm.
IJPRAI 17(3): 367-384 (2003) |
25 | EE | Guangyi Chen,
Tien D. Bui,
Adam Krzyzak:
Contour-based handwritten numeral recognition using multiwavelets and neural networks.
Pattern Recognition 36(7): 1597-1604 (2003) |
2002 |
24 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen:
A Fast SVM Training Algorithm.
SVM 2002: 53-67 |
23 | EE | Balázs Kégl,
Adam Krzyzak:
Piecewise Linear Skeletonization Using Principal Curves.
IEEE Trans. Pattern Anal. Mach. Intell. 24(1): 59-74 (2002) |
22 | EE | Jie Zhou,
Adam Krzyzak,
Ching Y. Suen:
Verification - a method of enhancing the recognizers of isolated and touching handwritten numerals.
Pattern Recognition 35(5): 1179-1189 (2002) |
2001 |
21 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen:
A Multi-Net Local Learning Framework for Pattern Recognition.
ICDAR 2001: 328-332 |
20 | EE | Adam Krzyzak:
Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks.
MLDM 2001: 217-225 |
19 | EE | Jian-xiong Dong,
Adam Krzyzak,
Ching Y. Suen:
Local Learning Framework for Recognition of Lowercase Handwritten Characters.
MLDM 2001: 226-238 |
18 | | Michael Kohler,
Adam Krzyzak:
Nonparametric regression estimation using penalized least squares.
IEEE Transactions on Information Theory 47(7): 3054-3059 (2001) |
2000 |
17 | EE | Balázs Kégl,
Adam Krzyzak,
Heinrich Niemann:
Radial Basis Function Networks and Complexity Regularization in Function Learning and Classification.
ICPR 2000: 2081-2086 |
16 | EE | Balázs Kégl,
Adam Krzyzak:
Piecewise Linear Skeletonization Using Principal Curves.
ICPR 2000: 3135-3138 |
15 | EE | Balázs Kégl,
Adam Krzyzak,
Tamás Linder,
Kenneth Zeger:
Learning and Design of Principal Curves.
IEEE Trans. Pattern Anal. Mach. Intell. 22(3): 281-297 (2000) |
1999 |
14 | EE | Jie Zhou,
Qiang Gan,
Adam Krzyzak,
Ching Y. Suen:
Recognition of handwritten numerals by Quantum Neural Network with fuzzy features.
IJDAR 2(1): 30-36 (1999) |
1998 |
13 | EE | Balázs Kégl,
Adam Krzyzak,
Tamás Linder,
Kenneth Zeger:
A Polygonal Line Algorithm for Constructing Principal Curves.
NIPS 1998: 501-507 |
12 | EE | Adam Krzyzak,
Tamás Linder:
Radial basis function networks and complexity regularization in function learning.
IEEE Transactions on Neural Networks 9(2): 247-256 (1998) |
1996 |
11 | EE | Adam Krzyzak,
Tamás Linder:
Radial Basis Function Networks and Complexity Regularization in Function Learning.
NIPS 1996: 197-203 |
1994 |
10 | | Adam Krzyzak,
Rolf Unbehauen:
On Estimation of Nonlinear Systems by Nonparametric Techniques.
ISCAS 1994: 189-192 |
9 | EE | Xinming Yu,
T. D. Bui,
Adam Krzyzak:
Robust Estimation for Range Image Segmentation and Reconstruction.
IEEE Trans. Pattern Anal. Mach. Intell. 16(5): 530-538 (1994) |
8 | EE | Lei Xu,
Adam Krzyzak,
Alan L. Yuille:
On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size.
Neural Networks 7(4): 609-628 (1994) |
1992 |
7 | | Adam Krzyzak:
Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation.
IEEE Transactions on Information Theory 38(4): 1323-1338 (1992) |
1991 |
6 | | Adam Krzyzak:
On exponential bounds on the Bayes risk of the kernel classification rule.
IEEE Transactions on Information Theory 37(3): 490-499 (1991) |
5 | EE | Lei Xu,
Adam Krzyzak,
Erkki Oja:
Neural Nets for Dual Subspace Pattern Recognition Method.
Int. J. Neural Syst. 2(3): 169-184 (1991) |
1990 |
4 | | Adam Krzyzak:
On estimation of a class of nonlinear systems by the kernel regression estimate.
IEEE Transactions on Information Theory 36(1): 141-152 (1990) |
1986 |
3 | | Adam Krzyzak:
The rates of convergence of kernel regression estimates and classification rules.
IEEE Transactions on Information Theory 32(5): 668-679 (1986) |
1984 |
2 | | Adam Krzyzak,
Miroslaw Pawlak:
Distribution-free consistency of a nonparametric kernel regression estimate and classification.
IEEE Transactions on Information Theory 30(1): 78-81 (1984) |
1 | | Adam Krzyzak,
Miroslaw Pawlak:
Almost everywhere convergence of a recursive regression function estimate and classification.
IEEE Transactions on Information Theory 30(1): 91- (1984) |