dblp.uni-trier.dewww.uni-trier.de

Adam Krzyzak

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2008
52EELukasz Jelen, Adam Krzyzak, Thomas Fevens: Comparison of Pleomorphic and Structural Features Used for Breast Cancer Malignancy Classification. Canadian Conference on AI 2008: 138-149
51EEAdam Krzyzak, Dominik Schäfer: Nonlinear Function Learning Using Radial Basis Function Networks: Convergence and Rates. ICAISC 2008: 101-110
50EEJoanna Rokita, Adam Krzyzak, Ching Y. Suen: Cell Phones Personal Authentication Systems Using Multimodal Biometrics. ICIAR 2008: 1013-1022
49EEWu Ding, Ching Y. Suen, Adam Krzyzak: A new courtesy amount recognition module of a Check Reading System. ICPR 2008: 1-4
48EEJian-xiong Dong, Ching Y. Suen, Adam Krzyzak: Effective shrinkage of large multi-class linear svm models for text categorization. ICPR 2008: 1-4
47EEJoanna Rokita, Adam Krzyzak, Ching Y. Suen: Multimodal Biometrics by Face and Hand Images Taken by a Cell Phone Camera. IJPRAI 22(3): 411-429 (2008)
2007
46EEShuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li: Semi-automatic computer aided lesion detection in dental X-rays using variational level set. Pattern Recognition 40(10): 2861-2873 (2007)
2006
45EEAdam Krzyzak, Dominik Schäfer: Nonlinear Function Learning by the Normalized Radial Basis Function Networks. ICAISC 2006: 46-55
44EEGuangyi Chen, Tien D. Bui, Adam Krzyzak: Palmprint Classification using Dual-Tree Complex Wavelets. ICIP 2006: 2645-2648
43EEGuangyi Chen, Tien D. Bui, Adam Krzyzak: Invariant Ridgelet-Fourier Descriptor for Pattern Recognition. ICPR (2) 2006: 768-771
42EEShuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li: Fast and Robust Clinical Triple-Region Image Segmentation Using One Level Set Function. MICCAI (2) 2006: 766-773
41EEGuangyi Chen, Tien D. Bui, Adam Krzyzak: Rotation invariant feature extraction using Ridgelet and Fourier transforms. Pattern Anal. Appl. 9(1): 83-93 (2006)
2005
40EEJian-xiong Dong, Dominique Ponson, Adam Krzyzak, Ching Y. Suen: Cursive word skew/slant corrections based on Radon transform. ICDAR 2005: 478-483
39EEShuo Li, Thomas Fevens, Adam Krzyzak, Chao Jin, Song Li: Toward Automatic Computer Aided Dental X-ray Analysis Using Level Set Method. MICCAI 2005: 670-678
38EEShuo Li, Thomas Fevens, Adam Krzyzak, Song Li: Automatic Clinical Image Segmentation Using Pathological Modelling, PCA and SVM. MLDM 2005: 314-324
37EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen, Dominique Ponson: Low-Level Cursive Word Representation Based on Geometric Decomposition. MLDM 2005: 590-599
36EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen: Fast SVM Training Algorithm with Decomposition on Very Large Data Sets. IEEE Trans. Pattern Anal. Mach. Intell. 27(4): 603-618 (2005)
35EEAdam Krzyzak, Dominik Schäfer: Nonparametric regression estimation by normalized radial basis function networks. IEEE Transactions on Information Theory 51(3): 1003-1010 (2005)
34EEGuangyi Chen, Tien D. Bui, Adam Krzyzak: Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recognition 38(1): 115-124 (2005)
33EEGuangyi Chen, Tien D. Bui, Adam Krzyzak: Rotation invariant pattern recognition using ridgelets, wavelet cycle-spinning and Fourier features. Pattern Recognition 38(12): 2314-2322 (2005)
32EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen: An improved handwritten Chinese character recognition system using support vector machine. Pattern Recognition Letters 26(12): 1849-1856 (2005)
2004
31 Shuo Li, Thomas Fevens, Adam Krzyzak: A SVM-based framework for autonomous volumetric medical image segmentation using hierarchical and coupled level sets. CARS 2004: 207-212
30EEAdam Krzyzak, Ewa Skubalska-Rafajlowicz: Combining Space-Filling Curves and Radial Basis Function Networks. ICAISC 2004: 229-234
29EEShuo Li, Thomas Fevens, Adam Krzyzak: Image Segmentation Adapted for Clinical Settings by Combining Pattern Classification and Level Sets. MICCAI (1) 2004: 160-167
2003
28EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen: A Fast Parallel Optimization for Training Support Vector Machine. MLDM 2003: 96-105
27 Miroslaw Pawlak, Ewaryst Rafajlowicz, Adam Krzyzak: Postfiltering versus prefiltering for signal recovery from noisy samples. IEEE Transactions on Information Theory 49(12): 3195-3212 (2003)
26EEJian-xiong Dong, Ching Y. Suen, Adam Krzyzak: A Fast SVM Training Algorithm. IJPRAI 17(3): 367-384 (2003)
25EEGuangyi Chen, Tien D. Bui, Adam Krzyzak: Contour-based handwritten numeral recognition using multiwavelets and neural networks. Pattern Recognition 36(7): 1597-1604 (2003)
2002
24EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen: A Fast SVM Training Algorithm. SVM 2002: 53-67
23EEBalázs Kégl, Adam Krzyzak: Piecewise Linear Skeletonization Using Principal Curves. IEEE Trans. Pattern Anal. Mach. Intell. 24(1): 59-74 (2002)
22EEJie Zhou, Adam Krzyzak, Ching Y. Suen: Verification - a method of enhancing the recognizers of isolated and touching handwritten numerals. Pattern Recognition 35(5): 1179-1189 (2002)
2001
21EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen: A Multi-Net Local Learning Framework for Pattern Recognition. ICDAR 2001: 328-332
20EEAdam Krzyzak: Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks. MLDM 2001: 217-225
19EEJian-xiong Dong, Adam Krzyzak, Ching Y. Suen: Local Learning Framework for Recognition of Lowercase Handwritten Characters. MLDM 2001: 226-238
18 Michael Kohler, Adam Krzyzak: Nonparametric regression estimation using penalized least squares. IEEE Transactions on Information Theory 47(7): 3054-3059 (2001)
2000
17EEBalázs Kégl, Adam Krzyzak, Heinrich Niemann: Radial Basis Function Networks and Complexity Regularization in Function Learning and Classification. ICPR 2000: 2081-2086
16EEBalázs Kégl, Adam Krzyzak: Piecewise Linear Skeletonization Using Principal Curves. ICPR 2000: 3135-3138
15EEBalázs Kégl, Adam Krzyzak, Tamás Linder, Kenneth Zeger: Learning and Design of Principal Curves. IEEE Trans. Pattern Anal. Mach. Intell. 22(3): 281-297 (2000)
1999
14EEJie Zhou, Qiang Gan, Adam Krzyzak, Ching Y. Suen: Recognition of handwritten numerals by Quantum Neural Network with fuzzy features. IJDAR 2(1): 30-36 (1999)
1998
13EEBalázs Kégl, Adam Krzyzak, Tamás Linder, Kenneth Zeger: A Polygonal Line Algorithm for Constructing Principal Curves. NIPS 1998: 501-507
12EEAdam Krzyzak, Tamás Linder: Radial basis function networks and complexity regularization in function learning. IEEE Transactions on Neural Networks 9(2): 247-256 (1998)
1996
11EEAdam Krzyzak, Tamás Linder: Radial Basis Function Networks and Complexity Regularization in Function Learning. NIPS 1996: 197-203
1994
10 Adam Krzyzak, Rolf Unbehauen: On Estimation of Nonlinear Systems by Nonparametric Techniques. ISCAS 1994: 189-192
9EEXinming Yu, T. D. Bui, Adam Krzyzak: Robust Estimation for Range Image Segmentation and Reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 16(5): 530-538 (1994)
8EELei Xu, Adam Krzyzak, Alan L. Yuille: On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size. Neural Networks 7(4): 609-628 (1994)
1992
7 Adam Krzyzak: Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation. IEEE Transactions on Information Theory 38(4): 1323-1338 (1992)
1991
6 Adam Krzyzak: On exponential bounds on the Bayes risk of the kernel classification rule. IEEE Transactions on Information Theory 37(3): 490-499 (1991)
5EELei Xu, Adam Krzyzak, Erkki Oja: Neural Nets for Dual Subspace Pattern Recognition Method. Int. J. Neural Syst. 2(3): 169-184 (1991)
1990
4 Adam Krzyzak: On estimation of a class of nonlinear systems by the kernel regression estimate. IEEE Transactions on Information Theory 36(1): 141-152 (1990)
1986
3 Adam Krzyzak: The rates of convergence of kernel regression estimates and classification rules. IEEE Transactions on Information Theory 32(5): 668-679 (1986)
1984
2 Adam Krzyzak, Miroslaw Pawlak: Distribution-free consistency of a nonparametric kernel regression estimate and classification. IEEE Transactions on Information Theory 30(1): 78-81 (1984)
1 Adam Krzyzak, Miroslaw Pawlak: Almost everywhere convergence of a recursive regression function estimate and classification. IEEE Transactions on Information Theory 30(1): 91- (1984)

Coauthor Index

1Tien D. Bui (T. D. Bui) [9] [25] [33] [34] [41] [43] [44]
2Guangyi Chen [25] [33] [34] [41] [43] [44]
3Wu Ding [49]
4Jian-xiong Dong [19] [21] [24] [26] [28] [32] [36] [37] [40] [48]
5Thomas Fevens [29] [31] [38] [39] [42] [46] [52]
6Qiang Gan [14]
7Lukasz Jelen [52]
8Chao Jin [39] [42] [46]
9Balázs Kégl [13] [15] [16] [17] [23]
10Michael Kohler [18]
11Shuo Li [29] [31] [38] [39] [42] [46]
12Song Li [38] [39] [42] [46]
13Tamás Linder [11] [12] [13] [15]
14Heinrich Niemann [17]
15Erkki Oja [5]
16Miroslaw Pawlak [1] [2] [27]
17Dominique Ponson [37] [40]
18Ewaryst Rafajlowicz [27]
19Joanna Rokita [47] [50]
20Dominik Schäfer [35] [45] [51]
21Ewa Skubalska-Rafajlowicz [30]
22Ching Y. Suen [14] [19] [21] [22] [24] [26] [28] [32] [36] [37] [40] [47] [48] [49] [50]
23Rolf Unbehauen [10]
24Lei Xu [5] [8]
25Xinming Yu [9]
26Alan L. Yuille [8]
27Kenneth Zeger [13] [15]
28Jie Zhou [14] [22]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)