| 2009 |
| 29 | EE | Shohei Shimizu,
Patrik O. Hoyer,
Aapo Hyvärinen:
Estimation of linear non-Gaussian acyclic models for latent factors.
Neurocomputing 72(7-9): 2024-2027 (2009) |
| 2008 |
| 28 | EE | Aapo Hyvärinen,
Shohei Shimizu,
Patrik O. Hoyer:
Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity.
ICML 2008: 424-431 |
| 27 | EE | Patrik O. Hoyer,
Dominik Janzing,
Joris M. Mooij,
Jonas Peters,
Bernhard Schölkopf:
Nonlinear causal discovery with additive noise models.
NIPS 2008: 689-696 |
| 26 | EE | Patrik O. Hoyer,
Aapo Hyvärinen,
Richard Scheines,
Peter Spirtes,
Joseph Ramsey,
Gustavo Lacerda,
Shohei Shimizu:
Causal discovery of linear acyclic models with arbitrary distributions.
UAI 2008: 282-289 |
| 25 | EE | Gustavo Lacerda,
Peter Spirtes,
Joseph Ramsey,
Patrik O. Hoyer:
Discovering Cyclic Causal Models by Independent Components Analysis.
UAI 2008: 366-374 |
| 24 | EE | Patrik O. Hoyer,
Shohei Shimizu,
Antti J. Kerminen,
Markus Palviainen:
Estimation of causal effects using linear non-Gaussian causal models with hidden variables.
Int. J. Approx. Reasoning 49(2): 362-378 (2008) |
| 2007 |
| 23 | EE | M. Asuncion Vicente,
Patrik O. Hoyer,
Aapo Hyvärinen:
Equivalence of Some Common Linear Feature Extraction Techniques for Appearance-Based Object Recognition Tasks.
IEEE Trans. Pattern Anal. Mach. Intell. 29(5): 896-900 (2007) |
| 2006 |
| 22 | EE | Patrik O. Hoyer,
Shohei Shimizu,
Aapo Hyvärinen,
Yutaka Kano,
Antti J. Kerminen:
New Permutation Algorithms for Causal Discovery Using ICA.
ICA 2006: 115-122 |
| 21 | EE | Shohei Shimizu,
Aapo Hyvärinen,
Yutaka Kano,
Patrik O. Hoyer,
Antti J. Kerminen:
Testing Significance of Mixing and Demixing Coefficients in ICA.
ICA 2006: 901-908 |
| 20 | EE | Patrik O. Hoyer,
Shohei Shimizu,
Antti J. Kerminen:
Estimation of linear, non-gaussian causal models in the presence of confounding latent variables.
Probabilistic Graphical Models 2006: 155-162 |
| 19 | EE | Patrik O. Hoyer,
Shohei Shimizu,
Antti J. Kerminen:
Estimation of linear, non-gaussian causal models in the presence of confounding latent variables
CoRR abs/cs/0603038: (2006) |
| 18 | EE | Shohei Shimizu,
Aapo Hyvärinen,
Patrik O. Hoyer,
Yutaka Kano:
Finding a causal ordering via independent component analysis.
Computational Statistics & Data Analysis 50(11): 3278-3293 (2006) |
| 17 | EE | Shohei Shimizu,
Patrik O. Hoyer,
Aapo Hyvärinen,
Antti J. Kerminen:
A Linear Non-Gaussian Acyclic Model for Causal Discovery.
Journal of Machine Learning Research 7: 2003-2030 (2006) |
| 2005 |
| 16 | EE | Shohei Shimizu,
Aapo Hyvärinen,
Yutaka Kano,
Patrik O. Hoyer:
Discovery of Non-gaussian Linear Causal Models using ICA.
UAI 2005: 525-533 |
| 2004 |
| 15 | EE | Patrik O. Hoyer:
Non-negative matrix factorization with sparseness constraints
CoRR cs.LG/0408058: (2004) |
| 14 | EE | Patrik O. Hoyer:
Non-negative Matrix Factorization with Sparseness Constraints.
Journal of Machine Learning Research 5: 1457-1469 (2004) |
| 2003 |
| 13 | EE | Patrik O. Hoyer:
Modeling receptive fields with non-negative sparse coding.
Neurocomputing 52-54: 547-552 (2003) |
| 2002 |
| 12 | EE | Patrik O. Hoyer,
Aapo Hyvärinen:
Interpreting Neural Response Variability as Monte Carlo Sampling of the Posterior.
NIPS 2002: 277-284 |
| 11 | EE | Patrik O. Hoyer:
Non-negative sparse coding
CoRR cs.NE/0202009: (2002) |
| 10 | EE | Patrik O. Hoyer,
Aapo Hyvärinen:
Sparse coding of natural contours.
Neurocomputing 44-46: 459-466 (2002) |
| 2001 |
| 9 | | Aapo Hyvärinen,
Patrik O. Hoyer,
Mika Inki:
Topographic Independent Component Analysis.
Neural Computation 13(7): 1527-1558 (2001) |
| 8 | EE | Aapo Hyvärinen,
Patrik O. Hoyer:
Topographic independent component analysis as a model of V1 organization and receptive fields.
Neurocomputing 38-40: 1307-1315 (2001) |
| 2000 |
| 7 | EE | Aapo Hyvärinen,
Patrik O. Hoyer,
Mika Inki:
Topographic ICA as a Model of Natural Image Statistics.
Biologically Motivated Computer Vision 2000: 535-544 |
| 6 | EE | Patrik O. Hoyer,
Aapo Hyvärinen:
Feature Extraction from Color and Stereo Images Using ICA.
IJCNN (3) 2000: 369-376 |
| 5 | EE | Aapo Hyvärinen,
Patrik O. Hoyer,
Mika Inki:
Topographic ICA as a Model of V1 Receptive Fields.
IJCNN (4) 2000: 83-88 |
| 4 | | Aapo Hyvärinen,
Patrik O. Hoyer:
Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces.
Neural Computation 12(7): 1705-1720 (2000) |
| 1999 |
| 3 | EE | Aapo Hyvärinen,
Patrik O. Hoyer:
Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA.
NIPS 1999: 827-833 |
| 2 | EE | Erkki Oja,
Aapo Hyvärinen,
Patrik O. Hoyer:
Image Feature Extraction and Denoising by Sparse Coding.
Pattern Anal. Appl. 2(2): 104-110 (1999) |
| 1998 |
| 1 | EE | Aapo Hyvärinen,
Patrik O. Hoyer,
Erkki Oja:
Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation.
NIPS 1998: 473-479 |