Volume 22,
Number 1-3,
November 1998
- Juha Karhunen, Petteri Pajunen, Erkki Oja:
The nonlinear PCA criterion in blind source separation: Relations with other approaches.
5-20
Electronic Edition (link) BibTeX
- Paris Smaragdis:
Blind separation of convolved mixtures in the frequency domain.
21-34
Electronic Edition (link) BibTeX
- Petteri Pajunen:
Blind source separation using algorithmic information theory.
35-48
Electronic Edition (link) BibTeX
- Aapo Hyvärinen:
Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood.
49-67
Electronic Edition (link) BibTeX
- Lei Xu, Chi Chiu Cheung, Shun-ichi Amari:
Learned parametric mixture based ICA algorithm.
69-80
Electronic Edition (link) BibTeX
- Lei Xu:
Bayesian Kullback Ying-Yang dependence reduction theory.
81-111
Electronic Edition (link) BibTeX
- Andrzej Cichocki, Scott C. Douglas, Shun-ichi Amari:
Robust techniques for independent component analysis (ICA) with noisy data.
113-129
Electronic Edition (link) BibTeX
- Francesco Palmieri, Alessandra Budillon, Michele Calabrese, Davide Mattera:
Searching for a binary factorial code using the ICA framework.
131-144
Electronic Edition (link) BibTeX
- Darryl Charles:
Constrained PCA techniques for the identification of common factors in data.
145-156
Electronic Edition (link) BibTeX
- Mitsuru Kawamoto, Kiyotoshi Matsuoka, Noboru Ohnishi:
A method of blind separation for convolved non-stationary signals.
157-171
Electronic Edition (link) BibTeX
- Allan Kardec Barros, Ali Mansour, Noboru Ohnishi:
Removing artifacts from electrocardiographic signals using independent components analysis.
173-186
Electronic Edition (link) BibTeX
- Erkki Oja:
From neural learning to independent components.
187-199
Electronic Edition (link) BibTeX
- Mark Girolami:
A nonlinear model of the binaural cocktail party effect.
201-215
Electronic Edition (link) BibTeX
Copyright © Sun May 17 00:02:57 2009
by Michael Ley (ley@uni-trier.de)