2008 |
109 | EE | Shashwati Kasetty,
Candice Stafford,
Gregory P. Walker,
Xiaoyue Wang,
Eamonn J. Keogh:
Real-Time Classification of Streaming Sensor Data.
ICTAI (1) 2008: 149-156 |
108 | EE | Xiaoyue Wang,
Lexiang Ye,
Eamonn J. Keogh,
Christian R. Shelton:
Annotating historical archives of images.
JCDL 2008: 341-350 |
107 | EE | Jin Shieh,
Eamonn J. Keogh:
iSAX: indexing and mining terabyte sized time series.
KDD 2008: 623-631 |
106 | EE | Lexiang Ye,
Xiaoyue Wang,
Dragomir Yankov,
Eamonn J. Keogh:
The Asymmetric Approximate Anytime Join: A New Primitive with Applications to Data Mining.
SDM 2008: 363-374 |
105 | EE | Eamonn J. Keogh:
Indexing and Mining Time Series Data.
Encyclopedia of GIS 2008: 493-497 |
104 | EE | Li Wei,
Eamonn J. Keogh,
Xiaopeng Xi,
Melissa Yoder:
Efficiently finding unusual shapes in large image databases.
Data Min. Knowl. Discov. 17(3): 343-376 (2008) |
103 | EE | Themis Palpanas,
Michail Vlachos,
Eamonn J. Keogh,
Dimitrios Gunopulos:
Streaming Time Series Summarization Using User-Defined Amnesic Functions.
IEEE Trans. Knowl. Data Eng. 20(7): 992-1006 (2008) |
102 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Li Wei,
Xiaopeng Xi,
Wendy L. Hodges:
Fast Best-Match Shape Searching in Rotation-Invariant Metric Spaces.
IEEE Transactions on Multimedia 10(2): 230-239 (2008) |
101 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Umaa Rebbapragada:
Disk aware discord discovery: finding unusual time series in terabyte sized datasets.
Knowl. Inf. Syst. 17(2): 241-262 (2008) |
100 | EE | Hui Ding,
Goce Trajcevski,
Peter Scheuermann,
Xiaoyue Wang,
Eamonn J. Keogh:
Querying and mining of time series data: experimental comparison of representations and distance measures.
PVLDB 1(2): 1542-1552 (2008) |
99 | EE | Xiaopeng Xi,
Ken Ueno,
Eamonn J. Keogh,
Dah-Jye Lee:
Converting non-parametric distance-based classification to anytime algorithms.
Pattern Anal. Appl. 11(3-4): 321-336 (2008) |
98 | EE | Ada Wai-Chee Fu,
Eamonn J. Keogh,
Leo Yung Hang Lau,
Chotirat (Ann) Ratanamahatana,
Raymond Chi-Wing Wong:
Scaling and time warping in time series querying.
VLDB J. 17(4): 899-921 (2008) |
2007 |
97 | EE | Petko Bakalov,
Eamonn J. Keogh,
Vassilis J. Tsotras:
TS2-tree - an efficient similarity based organization for trajectory data.
GIS 2007: 58 |
96 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Umaa Rebbapragada:
Disk Aware Discord Discovery: Finding Unusual Time Series in Terabyte Sized Datasets.
ICDM 2007: 381-390 |
95 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Kin Fai Kan:
Locally Constrained Support Vector Clustering.
ICDM 2007: 715-720 |
94 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Jose Medina,
Bill Yuan-chi Chiu,
Victor B. Zordan:
Detecting time series motifs under uniform scaling.
KDD 2007: 844-853 |
93 | EE | Michail Vlachos,
Bahar Taneri,
Eamonn J. Keogh,
Philip S. Yu:
Visual Exploration of Genomic Data.
PKDD 2007: 613-620 |
92 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Li Wei,
Xiaopeng Xi,
Wendy L. Hodges:
Fast Best-Match Shape Searching in Rotation Invariant Metric Spaces.
SDM 2007 |
91 | EE | Xiaopeng Xi,
Eamonn J. Keogh,
Li Wei,
Agenor Mafra-Neto:
Finding Motifs in a Database of Shapes.
SDM 2007 |
90 | EE | Yingyi Bu,
Oscar Tat-Wing Leung,
Ada Wai-Chee Fu,
Eamonn J. Keogh,
Jian Pei,
Sam Meshkin:
WAT: Finding Top-K Discords in Time Series Database.
SDM 2007 |
89 | EE | Eamonn J. Keogh,
Stefano Lonardi,
Chotirat Ann Ratanamahatana,
Li Wei,
Sang-Hee Lee,
John Handley:
Compression-based data mining of sequential data.
Data Min. Knowl. Discov. 14(1): 99-129 (2007) |
88 | EE | Jessica Lin,
Eamonn J. Keogh,
Li Wei,
Stefano Lonardi:
Experiencing SAX: a novel symbolic representation of time series.
Data Min. Knowl. Discov. 15(2): 107-144 (2007) |
87 | EE | Longbing Cao,
Chengqi Zhang,
Qiang Yang,
David Bell,
Michail Vlachos,
Bahar Taneri,
Eamonn J. Keogh,
Philip S. Yu,
Ning Zhong,
Mafruz Zaman Ashrafi,
David Taniar,
Eugene Dubossarsky,
Warwick Graco:
Domain-Driven, Actionable Knowledge Discovery.
IEEE Intelligent Systems 22(4): 78-88 (2007) |
86 | EE | Eamonn J. Keogh,
Jessica Lin,
Sang-Hee Lee,
Helga Van Herle:
Finding the most unusual time series subsequence: algorithms and applications.
Knowl. Inf. Syst. 11(1): 1-27 (2007) |
85 | EE | Li Wei,
Eamonn J. Keogh,
Helga Van Herle,
Agenor Mafra-Neto,
Russell J. Abbott:
Efficient query filtering for streaming time series with applications to semisupervised learning of time series classifiers.
Knowl. Inf. Syst. 11(3): 313-344 (2007) |
2006 |
84 | EE | Eamonn J. Keogh:
Data mining and information retrieval in time series/multimedia databases.
ACM Multimedia 2006: 10 |
83 | EE | Ada Wai-Chee Fu,
Oscar Tat-Wing Leung,
Eamonn J. Keogh,
Jessica Lin:
Finding Time Series Discords Based on Haar Transform.
ADMA 2006: 31-41 |
82 | EE | Pablo Viana,
Ann Gordon-Ross,
Eamonn J. Keogh,
Edna Barros,
Frank Vahid:
Configurable cache subsetting for fast cache tuning.
DAC 2006: 695-700 |
81 | EE | Dragomir Yankov,
Dennis DeCoste,
Eamonn J. Keogh:
Ensembles of Nearest Neighbor Forecasts.
ECML 2006: 545-556 |
80 | EE | Dragomir Yankov,
Eamonn J. Keogh:
Manifold Clustering of Shapes.
ICDM 2006: 1167-1171 |
79 | EE | Ken Ueno,
Xiaopeng Xi,
Eamonn J. Keogh,
Dah-Jye Lee:
Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining.
ICDM 2006: 623-632 |
78 | EE | Li Wei,
Eamonn J. Keogh,
Xiaopeng Xi:
SAXually Explicit Images: Finding Unusual Shapes.
ICDM 2006: 711-720 |
77 | EE | Eamonn J. Keogh,
Li Wei,
Xiaopeng Xi,
Stefano Lonardi,
Jin Shieh,
Scott Sirowy:
Intelligent Icons: Integrating Lite-Weight Data Mining and Visualization into GUI Operating Systems.
ICDM 2006: 912-916 |
76 | EE | Li Wei,
John Handley,
Nathaniel Martin,
Tong Sun,
Eamonn J. Keogh:
Clustering Workflow Requirements Using Compression Dissimilarity Measure.
ICDM Workshops 2006: 50-54 |
75 | EE | Xiaopeng Xi,
Eamonn J. Keogh,
Christian R. Shelton,
Li Wei,
Chotirat Ann Ratanamahatana:
Fast time series classification using numerosity reduction.
ICML 2006: 1033-1040 |
74 | EE | Aris Anagnostopoulos,
Michail Vlachos,
Marios Hadjieleftheriou,
Eamonn J. Keogh,
Philip S. Yu:
Global distance-based segmentation of trajectories.
KDD 2006: 34-43 |
73 | EE | Li Wei,
Eamonn J. Keogh:
Semi-supervised time series classification.
KDD 2006: 748-753 |
72 | EE | Jessica Lin,
Eamonn J. Keogh:
Group SAX: Extending the Notion of Contrast Sets to Time Series and Multimedia Data.
PKDD 2006: 284-296 |
71 | EE | Eamonn J. Keogh:
A Decade of Progress in Indexing and Mining Large Time Series Databases.
VLDB 2006: 1268 |
70 | EE | Eamonn J. Keogh,
Li Wei,
Xiaopeng Xi,
Sang-Hee Lee,
Michail Vlachos:
LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures.
VLDB 2006: 882-893 |
69 | EE | Anthony J. Bagnall,
Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh,
Stefano Lonardi,
Gareth J. Janacek:
A Bit Level Representation for Time Series Data Mining with Shape Based Similarity.
Data Min. Knowl. Discov. 13(1): 11-40 (2006) |
68 | EE | Eamonn J. Keogh,
Jessica Lin,
Ada Wai-Chee Fu,
Helga Van Herle:
Finding Unusual Medical Time-Series Subsequences: Algorithms and Applications.
IEEE Transactions on Information Technology in Biomedicine 10(3): 429-439 (2006) |
67 | EE | Stefano Lonardi,
Jessica Lin,
Eamonn J. Keogh,
Bill Yuan-chi Chiu:
Efficient Discovery of Unusual Patterns in Time Series.
New Generation Comput. 25(1): 61-93 (2006) |
66 | EE | Michail Vlachos,
Marios Hadjieleftheriou,
Dimitrios Gunopulos,
Eamonn J. Keogh:
Indexing Multidimensional Time-Series.
VLDB J. 15(1): 1-20 (2006) |
2005 |
65 | EE | Jessica Lin,
Eamonn J. Keogh,
Ada Wai-Chee Fu,
Helga Van Herle:
Approximations to Magic: Finding Unusual Medical Time Series.
CBMS 2005: 329-334 |
64 | EE | Li Wei,
Nitin Kumar,
Venkata Nishanth Lolla,
Eamonn J. Keogh,
Stefano Lonardi,
Chotirat (Ann) Ratanamahatana,
Helga Van Herle:
A Practical Tool for Visualizing and Data Mining Medical Time Series.
CBMS 2005: 341-346 |
63 | EE | Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh:
Multimedia Retrieval Using Time Series Representation and Relevance Feedback.
ICADL 2005: 400-405 |
62 | EE | Eamonn J. Keogh,
Jessica Lin,
Ada Wai-Chee Fu:
HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence.
ICDM 2005: 226-233 |
61 | EE | Li Wei,
Eamonn J. Keogh,
Helga Van Herle,
Agenor Mafra-Neto:
Atomic Wedgie: Efficient Query Filtering for Streaming Times Series.
ICDM 2005: 490-497 |
60 | EE | Longin Jan Latecki,
Vasileios Megalooikonomou,
Qiang Wang,
Rolf Lakämper,
Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh:
Partial Elastic Matching of Time Series.
ICDM 2005: 701-704 |
59 | EE | Dragomir Yankov,
Eamonn J. Keogh,
Stefano Lonardi,
Ada Wai-Chee Fu:
Dot Plots for Time Series Analysis.
ICTAI 2005: 159-168 |
58 | EE | Eamonn J. Keogh:
Visualization and Mining of Temporal Data.
IEEE Visualization 2005: 126 |
57 | EE | Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh:
Using Relevance Feedback to Learn Both the Distance Measure and the Query in Multimedia Databases.
KES (2) 2005: 16-23 |
56 | EE | Petko Bakalov,
Marios Hadjieleftheriou,
Eamonn J. Keogh,
Vassilis J. Tsotras:
Efficient trajectory joins using symbolic representations.
Mobile Data Management 2005: 86-93 |
55 | EE | Jessica Lin,
Michail Vlachos,
Eamonn J. Keogh,
Dimitrios Gunopulos,
Jian-Wei Liu,
Shou-Jian Yu,
Jia-Jin Le:
A MPAA-Based Iterative Clustering Algorithm Augmented by Nearest Neighbors Search for Time-Series Data Streams.
PAKDD 2005: 333-342 |
54 | EE | Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh,
Anthony J. Bagnall,
Stefano Lonardi:
A Novel Bit Level Time Series Representation with Implication of Similarity Search and Clustering.
PAKDD 2005: 771-777 |
53 | EE | Longin Jan Latecki,
Vasilis Megalooikonomou,
Qiang Wang,
Rolf Lakämper,
Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh:
Elastic Partial Matching of Time Series.
PKDD 2005: 577-584 |
52 | EE | Eamonn J. Keogh:
Recent Advances in Mining Time Series Data.
PKDD 2005: 6 |
51 | | Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh:
Three Myths about Dynamic Time Warping Data Mining.
SDM 2005 |
50 | | Nitin Kumar,
Venkata Nishanth Lolla,
Eamonn J. Keogh,
Stefano Lonardi,
Chotirat (Ann) Ratanamahatana:
Time-series Bitmaps: a Practical Visualization Tool for Working with Large Time Series Databases.
SDM 2005 |
49 | | Li Wei,
Nitin Kumar,
Venkata Nishanth Lolla,
Eamonn J. Keogh,
Stefano Lonardi,
Chotirat (Ann) Ratanamahatana:
Assumption-Free Anomaly Detection in Time Series.
SSDBM 2005: 237-240 |
48 | EE | Ada Wai-Chee Fu,
Eamonn J. Keogh,
Leo Yung Hang Lau,
Chotirat (Ann) Ratanamahatana:
Scaling and Time Warping in Time Series Querying.
VLDB 2005: 649-660 |
47 | | Michail Vlachos,
Marios Hadjieleftheriou,
Eamonn J. Keogh,
Dimitrios Gunopulos:
Indexing Multi-Dimensional Trajectories for Similarity Queries.
Spatial Databases 2005: 107-128 |
46 | | Chotirat (Ann) Ratanamahatana,
Jessica Lin,
Dimitrios Gunopulos,
Eamonn J. Keogh,
Michail Vlachos,
Gautam Das:
Mining Time Series Data.
The Data Mining and Knowledge Discovery Handbook 2005: 1069-1103 |
45 | EE | Jessica Lin,
Eamonn J. Keogh,
Stefano Lonardi:
Visualizing and discovering non-trivial patterns in large time series databases.
Information Visualization 4(2): 61-82 (2005) |
44 | EE | Li Wei,
Eamonn J. Keogh,
Xiaopeng Xi,
Stefano Lonardi:
Integrating Lite-Weight but Ubiquitous Data Mining into GUI Operating Systems.
J. UCS 11(11): 1820-1834 (2005) |
43 | EE | Eamonn J. Keogh,
Chotirat (Ann) Ratanamahatana:
Exact indexing of dynamic time warping.
Knowl. Inf. Syst. 7(3): 358-386 (2005) |
42 | EE | Eamonn J. Keogh,
Jessica Lin:
Clustering of time-series subsequences is meaningless: implications for previous and future research.
Knowl. Inf. Syst. 8(2): 154-177 (2005) |
41 | EE | Eamonn J. Keogh:
Guest Editorial.
Machine Learning 58(2-3): 103-105 (2005) |
2004 |
40 | EE | Eamonn J. Keogh,
Jessica Lin,
Stefano Lonardi,
Bill Yuan-chi Chiu:
We Have Seen the Future, and It Is Symbolic.
ACSW Frontiers 2004: 83 |
39 | EE | Jessica Lin,
Michail Vlachos,
Eamonn J. Keogh,
Dimitrios Gunopulos:
Iterative Incremental Clustering of Time Series.
EDBT 2004: 106-122 |
38 | EE | Themistoklis Palpanas,
Michail Vlachos,
Eamonn J. Keogh,
Dimitrios Gunopulos,
Wagner Truppel:
Online Amnesic Approximation of Streaming Time Series.
ICDE 2004: 338-349 |
37 | EE | Eamonn J. Keogh,
Stefano Lonardi,
Chotirat (Ann) Ratanamahatana:
Towards parameter-free data mining.
KDD 2004: 206-215 |
36 | EE | Jessica Lin,
Eamonn J. Keogh,
Stefano Lonardi,
Jeffrey P. Lankford,
Donna M. Nystrom:
Visually mining and monitoring massive time series.
KDD 2004: 460-469 |
35 | EE | Chotirat (Ann) Ratanamahatana,
Eamonn J. Keogh:
Making Time-Series Classification More Accurate Using Learned Constraints.
SDM 2004 |
34 | EE | Jessica Lin,
Eamonn J. Keogh,
Stefano Lonardi,
Jeffrey P. Lankford,
Donna M. Nystrom:
VizTree: a Tool for Visually Mining and Monitoring Massive Time Series Databases.
VLDB 2004: 1269-1272 |
33 | EE | Eamonn J. Keogh,
Themis Palpanas,
Victor B. Zordan,
Dimitrios Gunopulos,
Marc Cardle:
Indexing Large Human-Motion Databases.
VLDB 2004: 780-791 |
32 | EE | Jiyuan An,
Yi-Ping Phoebe Chen,
Eamonn J. Keogh:
A Grid-Based Index Method for Time Warping Distance.
WAIM 2004: 65-75 |
2003 |
31 | EE | Jessica Lin,
Eamonn J. Keogh,
Stefano Lonardi,
Bill Yuan-chi Chiu:
A symbolic representation of time series, with implications for streaming algorithms.
DMKD 2003: 2-11 |
30 | EE | Jessica Lin,
Eamonn J. Keogh,
Wagner Truppel:
Clustering of streaming time series is meaningless.
DMKD 2003: 56-65 |
29 | | Jessica Lin,
Eamonn J. Keogh,
Wagner Truppel:
(Not) Finding Rules in Time Series: A Surprising Result with Implications for Previous and Future Research.
IC-AI 2003: 55-61 |
28 | EE | Eamonn J. Keogh,
Jessica Lin,
Wagner Truppel:
Clustering of Time Series Subsequences is Meaningless: Implications for Previous and Future Research.
ICDM 2003: 115-122 |
27 | EE | Jiyuan An,
Hanxiong Chen,
Kazutaka Furuse,
Nobuo Ohbo,
Eamonn J. Keogh:
Grid-Based Indexing for Large Time Series Databases.
IDEAL 2003: 614-621 |
26 | EE | Michail Vlachos,
Marios Hadjieleftheriou,
Dimitrios Gunopulos,
Eamonn J. Keogh:
Indexing multi-dimensional time-series with support for multiple distance measures.
KDD 2003: 216-225 |
25 | EE | Bill Yuan-chi Chiu,
Eamonn J. Keogh,
Stefano Lonardi:
Probabilistic discovery of time series motifs.
KDD 2003: 493-498 |
24 | EE | Eamonn J. Keogh:
Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases.
PKDD 2003: 253-265 |
23 | | Eamonn J. Keogh:
A Gentle Introduction to Machine Learning and Data Mining for the Database Community.
SBBD 2003: 2 |
22 | EE | Eamonn J. Keogh,
Shruti Kasetty:
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration.
Data Min. Knowl. Discov. 7(4): 349-371 (2003) |
2002 |
21 | EE | Eamonn J. Keogh,
Harry Hochheiser,
Ben Shneiderman:
An Augmented Visual Query Mechanism for Finding Patterns in Time Series Data.
FQAS 2002: 240-250 |
20 | EE | Pranav Patel,
Eamonn J. Keogh,
Jessica Lin,
Stefano Lonardi:
Mining Motifs in Massive Time Series Databases.
ICDM 2002: 370-377 |
19 | EE | Eamonn J. Keogh,
Shruti Kasetty:
On the need for time series data mining benchmarks: a survey and empirical demonstration.
KDD 2002: 102-111 |
18 | EE | Eamonn J. Keogh,
Stefano Lonardi,
Bill Yuan-chi Chiu:
Finding surprising patterns in a time series database in linear time and space.
KDD 2002: 550-556 |
17 | | Eamonn J. Keogh:
Indexing and Mining Time Series.
SBBD 2002: 9 |
16 | EE | Selina Chu,
Eamonn J. Keogh,
David Hart,
Michael J. Pazzani:
Iterative Deepening Dynamic Time Warping for Time Series.
SDM 2002 |
15 | EE | Eamonn J. Keogh:
Exact Indexing of Dynamic Time Warping.
VLDB 2002: 406-417 |
14 | EE | Kaushik Chakrabarti,
Eamonn J. Keogh,
Sharad Mehrotra,
Michael J. Pazzani:
Locally adaptive dimensionality reduction for indexing large time series databases.
ACM Trans. Database Syst. 27(2): 188-228 (2002) |
13 | EE | Eamonn J. Keogh,
Michael J. Pazzani:
Learning the Structure of Augmented Bayesian Classifiers.
International Journal on Artificial Intelligence Tools 11(4): 587-601 (2002) |
2001 |
12 | EE | Eamonn J. Keogh,
Selina Chu,
David Hart,
Michael J. Pazzani:
An Online Algorithm for Segmenting Time Series.
ICDM 2001: 289-296 |
11 | EE | Eamonn J. Keogh,
Selina Chu,
Michael J. Pazzani:
Ensemble-index: a new approach to indexing large databases.
KDD 2001: 117-125 |
10 | EE | Eamonn J. Keogh,
Kaushik Chakrabarti,
Sharad Mehrotra,
Michael J. Pazzani:
Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases.
SIGMOD Conference 2001: 151-162 |
9 | EE | Eamonn J. Keogh,
Kaushik Chakrabarti,
Michael J. Pazzani,
Sharad Mehrotra:
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases.
Knowl. Inf. Syst. 3(3): 263-286 (2001) |
2000 |
8 | EE | Eamonn J. Keogh,
Michael J. Pazzani:
Scaling up dynamic time warping for datamining applications.
KDD 2000: 285-289 |
7 | | Eamonn J. Keogh,
Michael J. Pazzani:
A Simple Dimensionality Reduction Technique for Fast Similarity Search in Large Time Series Databases.
PAKDD 2000: 122-133 |
1999 |
6 | | Eamonn J. Keogh,
Michael J. Pazzani:
Scaling up Dynamic Time Warping to Massive Dataset.
PKDD 1999: 1-11 |
5 | EE | Eamonn J. Keogh,
Michael J. Pazzani:
Relevance Feedback Retrieval of Time Series Data.
SIGIR 1999: 183-190 |
4 | EE | Eamonn J. Keogh,
Michael J. Pazzani:
An Indexing Scheme for Fast Similarity Search in Large Time Series Databases.
SSDBM 1999: 56-67 |
1998 |
3 | | Eamonn J. Keogh,
Michael J. Pazzani:
An Enhanced Representation of Time Series Which Allows Fast and Accurate Classification, Clustering and Relevance Feedback.
KDD 1998: 239-243 |
1997 |
2 | EE | Eamonn J. Keogh:
Fast Similarity Search in the Presence of Longitudinal Scaling in Time Series Databases.
ICTAI 1997: 578-584 |
1 | | Eamonn J. Keogh,
Padhraic Smyth:
A Probabilistic Approach to Fast Pattern Matching in Time Series Databases.
KDD 1997: 24-30 |