2008 |
44 | EE | Katsuhiko Ishiguro,
Takeshi Yamada,
Naonori Ueda:
Simultaneous clustering and tracking unknown number of objects.
CVPR 2008 |
43 | EE | Tomoharu Iwata,
Takeshi Yamada,
Naonori Ueda:
Probabilistic latent semantic visualization: topic model for visualizing documents.
KDD 2008: 363-371 |
42 | EE | Akinori Fujino,
Naonori Ueda,
Kazumi Saito:
Semisupervised Learning for a Hybrid Generative/Discriminative Classifier based on the Maximum Entropy Principle.
IEEE Trans. Pattern Anal. Mach. Intell. 30(3): 424-437 (2008) |
2007 |
41 | EE | Shuhei Kuwata,
Naonori Ueda:
One-shot Collaborative Filtering.
CIDM 2007: 300-307 |
40 | EE | Akinori Fujino,
Naonori Ueda,
Kazumi Saito:
Semi-Supervised Learning for Multi-Component Data Classification.
IJCAI 2007: 2754-2759 |
39 | EE | Shiro Usui,
Antoine Naud,
Naonori Ueda,
Tatsuki Taniguchi:
3D-SE Viewer: A Text Mining Tool based on Bipartite Graph Visualization.
IJCNN 2007: 1103-1108 |
38 | EE | Manabu Kimura,
Kazumi Saito,
Naonori Ueda:
Pivot Learning for Efficient Similarity Search.
KES (3) 2007: 227-234 |
37 | EE | Akinori Fujino,
Naonori Ueda,
Kazumi Saito:
A hybrid generative/discriminative approach to text classification with additional information.
Inf. Process. Manage. 43(2): 379-392 (2007) |
36 | EE | Tomoharu Iwata,
Kazumi Saito,
Naonori Ueda,
Sean Stromsten,
Thomas L. Griffiths,
Joshua B. Tenenbaum:
Parametric Embedding for Class Visualization.
Neural Computation 19(9): 2536-2556 (2007) |
2006 |
35 | | Charles Kemp,
Joshua B. Tenenbaum,
Thomas L. Griffiths,
Takeshi Yamada,
Naonori Ueda:
Learning Systems of Concepts with an Infinite Relational Model.
AAAI 2006 |
34 | EE | Tomoharu Iwata,
Kazumi Saito,
Naonori Ueda:
Visual nonlinear discriminant analysis for classifier design.
ESANN 2006: 283-288 |
33 | EE | Shiro Usui,
Paulito P. Palmes,
Kazunori Nagata,
Tatsuki Taniguchi,
Naonori Ueda:
Extracting Keywords from Research Abstracts for the Neuroinformatics Platform Index Tree.
IJCNN 2006: 5045-5050 |
32 | EE | Naonori Ueda,
Kazumi Saito:
Parametric mixture model for multitopic text.
Systems and Computers in Japan 37(2): 56-66 (2006) |
2005 |
31 | | Akinori Fujino,
Naonori Ueda,
Kazumi Saito:
A Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design.
AAAI 2005: 764-769 |
30 | EE | Akinori Fujino,
Naonori Ueda,
Kazumi Saito:
A Classifier Design Based on Combining Multiple Components by Maximum Entropy Principle.
AIRS 2005: 423-438 |
29 | EE | Masashi Inoue,
Naonori Ueda:
Retrieving lightly annotated images using image similarities.
SAC 2005: 1031-1037 |
28 | EE | Shinji Watanabe,
Yasuhiro Minami,
Atsushi Nakamura,
Naonori Ueda:
Selection of Shared-State Hidden Markov Model Structure Using Bayesian Criterion.
IEICE Transactions 88-D(1): 1-9 (2005) |
2004 |
27 | EE | Yuji Kaneda,
Naonori Ueda,
Kazumi Saito:
Extended Parametric Mixture Model for Robust Multi-labeled Text Categorization.
KES 2004: 616-623 |
26 | EE | Tomoharu Iwata,
Kazumi Saito,
Naonori Ueda,
Sean Stromsten,
Thomas L. Griffiths,
Joshua B. Tenenbaum:
Parametric Embedding for Class Visualization.
NIPS 2004 |
25 | EE | Masahiro Kimura,
Kazumi Saito,
Naonori Ueda:
Modeling of growing networks with directional attachment and communities.
Neural Networks 17(7): 975-988 (2004) |
24 | EE | Masahiro Kimura,
Kazumi Saito,
Naonori Ueda:
Modeling network growth with directional attachment and communities.
Systems and Computers in Japan 35(8): 1-11 (2004) |
23 | EE | Naonori Ueda,
Masashi Inoue:
Extended Tied-Mixture HMMs for Both Labeled and Unlabeled Time Series Data.
VLSI Signal Processing 37(2-3): 189-197 (2004) |
2003 |
22 | EE | Masahiro Kimura,
Kazumi Saito,
Naonori Ueda:
Modeling of growing networks with directional attachment and communities.
ESANN 2003: 15-20 |
21 | | Takeshi Yamada,
Kazumi Saito,
Naonori Ueda:
Cross-Entropy Directed Embedding of Network Data.
ICML 2003: 832-839 |
20 | EE | Masashi Inoue,
Naonori Ueda:
Exploitation of Unlabeled Sequences in Hidden Markov Models.
IEEE Trans. Pattern Anal. Mach. Intell. 25(12): 1570-1581 (2003) |
19 | EE | Masashi Inoue,
Naonori Ueda:
Use of unlabeled time series data in hidden Markov models.
Systems and Computers in Japan 34(13): 1-12 (2003) |
18 | EE | Satoshi Suzuki,
Naonori Ueda:
Adaptive clustering using modular learning architecture.
Systems and Computers in Japan 34(2): 70-80 (2003) |
2002 |
17 | EE | Naonori Ueda,
Kazumi Saito:
Single-shot detection of multiple categories of text using parametric mixture models.
KDD 2002: 626-631 |
16 | EE | Shinji Watanabe,
Yasuhiro Minami,
Atsushi Nakamura,
Naonori Ueda:
Application of Variational Bayesian Approach to Speech Recognition.
NIPS 2002: 1237-1244 |
15 | EE | Naonori Ueda,
Kazumi Saito:
Parametric Mixture Models for Multi-Labeled Text.
NIPS 2002: 721-728 |
14 | EE | Naonori Ueda,
Zoubin Ghahramani:
Bayesian model search for mixture models based on optimizing variational bounds.
Neural Networks 15(10): 1223-1241 (2002) |
2000 |
13 | EE | Naonori Ueda:
Optimal Linear Combination of Neural Networks for Improving Classification Performance.
IEEE Trans. Pattern Anal. Mach. Intell. 22(2): 207-215 (2000) |
12 | | Naonori Ueda,
Ryohei Nakano,
Zoubin Ghahramani,
Geoffrey E. Hinton:
SMEM Algorithm for Mixture Models.
Neural Computation 12(9): 2109-2128 (2000) |
11 | EE | Naonori Ueda,
Ryohei Nakano:
EM algorithm with split and merge operations for mixture models.
Systems and Computers in Japan 31(5): 1-11 (2000) |
10 | EE | Naonori Ueda:
Optimal linear combination of neural network classifiers based on the minimum classification error criterion.
Systems and Computers in Japan 31(9): 39-48 (2000) |
9 | EE | Naonori Ueda,
Ryohei Nakano,
Zoubin Ghahramani,
Geoffrey E. Hinton:
Split and Merge EM Algorithm for Improving Gaussian Mixture Density Estimates.
VLSI Signal Processing 26(1-2): 133-140 (2000) |
1998 |
8 | EE | Naonori Ueda,
Ryohei Nakano,
Zoubin Ghahramani,
Geoffrey E. Hinton:
SMEM Algorithm for Mixture Models.
NIPS 1998: 599-605 |
7 | EE | Naonori Ueda,
Ryohei Nakano:
Deterministic annealing EM algorithm.
Neural Networks 11(2): 271-282 (1998) |
1995 |
6 | | Naonori Ueda,
Kenji Mase:
Tracking Moving Contours Using Energy-Minimizing Elastic Contour Models.
IJPRAI 9(3): 465-484 (1995) |
1994 |
5 | EE | Naonori Ueda,
Ryohei Nakano:
Deterministic Annealing Variant of the EM Algorithm.
NIPS 1994: 545-552 |
4 | EE | Naonori Ueda,
Ryohei Nakano:
A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers.
Neural Networks 7(8): 1211-1227 (1994) |
1993 |
3 | EE | Naonori Ueda,
Satoshi Suzuki:
Learning Visual Models from Shape Contours Using Multiscale Convex/Concave Structure Matching.
IEEE Trans. Pattern Anal. Mach. Intell. 15(4): 337-352 (1993) |
2 | | Satoshi Suzuki,
Naonori Ueda,
Jack Sklansky:
Graph-Based Thinning for Binary Images.
IJPRAI 7(5): 1009-1030 (1993) |
1992 |
1 | | Naonori Ueda,
Kenji Mase:
Tracking Moving Contours Using Energy-Minimizing Elastic Contour Models.
ECCV 1992: 453-457 |