2009 | ||
---|---|---|
85 | EE | Frank J. Balbach, Thomas Zeugmann: Recent Developments in Algorithmic Teaching. LATA 2009: 1-18 |
2008 | ||
84 | Yoav Freund, László Györfi, György Turán, Thomas Zeugmann: Algorithmic Learning Theory, 19th International Conference, ALT 2008, Budapest, Hungary, October 13-16, 2008. Proceedings Springer 2008 | |
83 | EE | Skip Jordan, Thomas Zeugmann: Indistinguishability and First-Order Logic. TAMC 2008: 94-104 |
82 | EE | Yohji Akama, Thomas Zeugmann: Consistent and coherent learning with delta-delay. Inf. Comput. 206(11): 1362-1374 (2008) |
81 | EE | John Case, Takeshi Shinohara, Thomas Zeugmann, Sandra Zilles: Foreword. Theor. Comput. Sci. 397(1-3): 1-3 (2008) |
80 | EE | Steffen Lange, Thomas Zeugmann, Sandra Zilles: Learning indexed families of recursive languages from positive data: A survey. Theor. Comput. Sci. 397(1-3): 194-232 (2008) |
79 | EE | Thomas Zeugmann, Sandra Zilles: Learning recursive functions: A survey. Theor. Comput. Sci. 397(1-3): 4-56 (2008) |
2007 | ||
78 | EE | Shai Ben-David, John Case, Thomas Zeugmann: Foreword. Theor. Comput. Sci. 382(3): 167-169 (2007) |
2006 | ||
77 | EE | Frank J. Balbach, Thomas Zeugmann: Teaching Memoryless Randomized Learners Without Feedback. ALT 2006: 93-108 |
76 | EE | Frank J. Balbach, Thomas Zeugmann: Teaching Randomized Learners. COLT 2006: 229-243 |
75 | EE | Frank J. Balbach, Thomas Zeugmann: On the Teachability of Randomized Learners. Complexity of Boolean Functions 2006 |
74 | EE | Jan Poland, Thomas Zeugmann: Clustering Pairwise Distances with Missing Data: Maximum Cuts Versus Normalized Cuts. Discovery Science 2006: 197-208 |
73 | EE | Yohji Akama, Thomas Zeugmann: Consistency Conditions for Inductive Inference of Recursive Functions. JSAI 2006: 251-264 |
72 | EE | Ryutaro Kurai, Shin-ichi Minato, Thomas Zeugmann: N-Gram Analysis Based on Zero-Suppressed BDDs. JSAI 2006: 289-300 |
71 | EE | Thomas Zeugmann: Inductive Inference and Language Learning. TAMC 2006: 464-473 |
70 | EE | Nicolò Cesa-Bianchi, Rüdiger Reischuk, Thomas Zeugmann: Foreword. Theor. Comput. Sci. 350(1): 1-2 (2006) |
69 | EE | John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, Thomas Zeugmann: Learning a subclass of regular patterns in polynomial time. Theor. Comput. Sci. 364(1): 115-131 (2006) |
68 | EE | Thomas Zeugmann: From learning in the limit to stochastic finite learning. Theor. Comput. Sci. 364(1): 77-97 (2006) |
2005 | ||
67 | EE | Frank J. Balbach, Thomas Zeugmann: Teaching Learners with Restricted Mind Changes. ALT 2005: 474-489 |
66 | EE | Steffen Lange, Gunter Grieser, Thomas Zeugmann: Inductive inference of approximations for recursive concepts. Theor. Comput. Sci. 348(1): 15-40 (2005) |
2004 | ||
65 | EE | John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, Thomas Zeugmann: A Polynomial Time Learner for a Subclass of Regular Patterns Electronic Colloquium on Computational Complexity (ECCC)(038): (2004) |
2003 | ||
64 | EE | Thomas Zeugmann: Can Learning in the Limit Be Done Efficiently? ALT 2003: 17-38 |
63 | EE | John Case, Sanjay Jain, Rüdiger Reischuk, Frank Stephan, Thomas Zeugmann: Learning a Subclass of Regular Patterns in Polynomial Time. ALT 2003: 234-246 |
62 | EE | Thomas Zeugmann: Can Learning in the Limit Be Done Efficiently? Discovery Science 2003: 46 |
61 | EE | Sanjay Jain, Efim B. Kinber, Rolf Wiehagen, Thomas Zeugmann: On learning of functions refutably. Theor. Comput. Sci. 1(298): 111-143 (2003) |
2002 | ||
60 | Frank Stephan, Thomas Zeugmann: Learning classes of approximations to non-recursive function. Theor. Comput. Sci. 288(2): 309-341 (2002) | |
2001 | ||
59 | Naoki Abe, Roni Khardon, Thomas Zeugmann: Algorithmic Learning Theory, 12th International Conference, ALT 2001, Washington, DC, USA, November 25-28, 2001, Proceedings Springer 2001 | |
58 | EE | Naoki Abe, Roni Khardon, Thomas Zeugmann: Editors' Introduction. ALT 2001: 1-8 |
57 | EE | Sanjay Jain, Efim B. Kinber, Rolf Wiehagen, Thomas Zeugmann: Learning Recursive Functions Refutably. ALT 2001: 283-298 |
56 | EE | Thomas Zeugmann: Stochastic Finite Learning. SAGA 2001: 155-172 |
55 | Peter Rossmanith, Thomas Zeugmann: Stochastic Finite Learning of the Pattern Languages. Machine Learning 44(1/2): 67-91 (2001) | |
54 | EE | Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, Thomas Zeugmann: Learning one-variable pattern languages very efficiently on average, in parallel, and by asking queries. Theor. Comput. Sci. 261(1): 119-156 (2001) |
53 | EE | Rolf Wiehagen, Thomas Zeugmann: Foreword. Theor. Comput. Sci. 268(2): 175-177 (2001) |
2000 | ||
52 | EE | Gunter Grieser, Steffen Lange, Thomas Zeugmann: Learning Recursive Concepts with Anomalies. ALT 2000: 101-115 |
51 | Frank Stephan, Thomas Zeugmann: Average-Case Complexity of Learning Polynomials. COLT 2000: 59-68 | |
50 | Rüdiger Reischuk, Thomas Zeugmann: An Average-Case Optimal One-Variable Pattern Language Learner. J. Comput. Syst. Sci. 60(2): 302-335 (2000) | |
49 | EE | Sanjay Jain, Efim B. Kinber, Steffen Lange, Rolf Wiehagen, Thomas Zeugmann: Learning languages and functions by erasing. Theor. Comput. Sci. 241(1-2): 143-189 (2000) |
1999 | ||
48 | EE | Frank Stephan, Thomas Zeugmann: On the Uniform Learnability of Approximations to Non-Recursive Functions. ATL 1999: 276-290 |
47 | EE | Rüdiger Reischuk, Thomas Zeugmann: A Complete and Tight Average-Case Analysis of Learning Monomials. STACS 1999: 414-423 |
46 | John Case, Sanjay Jain, Steffen Lange, Thomas Zeugmann: Incremental Concept Learning for Bounded Data Mining. Inf. Comput. 152(1): 74-110 (1999) | |
1998 | ||
45 | Michael M. Richter, Carl H. Smith, Rolf Wiehagen, Thomas Zeugmann: Algorithmic Learning Theory, 9th International Conference, ALT '98, Otzenhausen, Germany, October 8-10, 1998, Proceedings Springer 1998 | |
44 | EE | Michael M. Richter, Carl H. Smith, Rolf Wiehagen, Thomas Zeugmann: Editor's Introduction. ALT 1998: 1-10 |
43 | EE | Rüdiger Reischuk, Thomas Zeugmann: Learning One-Variable Pattern Languages in Linear Average Time. COLT 1998: 198-208 |
42 | EE | Peter Rossmanith, Thomas Zeugmann: Learning k-Variable Pattern Languages Efficiently Stochastically Finite on Average from Positive Data. ICGI 1998: 13-24 |
41 | Thomas Zeugmann: Lange and Wiehagen's Pattern Language Learning Algorithm: An Average-Case Analysis with Respect to its Total Learning Time. Ann. Math. Artif. Intell. 23(1-2): 117-145 (1998) | |
40 | EE | Rüdiger Reischuk, Thomas Zeugmann: An Average-Case Optimal One-Variable Pattern Language Learner Electronic Colloquium on Computational Complexity (ECCC) 5(69): (1998) |
1997 | ||
39 | Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, Thomas Zeugmann: Learning One-Variable Pattern Languages Very Efficiently on Average, in Parallel, and by Asking Queries. ALT 1997: 260-276 | |
38 | Carl H. Smith, Rolf Wiehagen, Thomas Zeugmann: Classifying Predicates and Languages. Int. J. Found. Comput. Sci. 8(1): 15- (1997) | |
1996 | ||
37 | Steffen Lange, Rolf Wiehagen, Thomas Zeugmann: Learning by Erasing. ALT 1996: 228-241 | |
36 | Rusins Freivalds, Thomas Zeugmann: Co-Learning of Recursive Languages from Positive Data. Ershov Memorial Conference 1996: 122-133 | |
35 | Steffen Lange, Thomas Zeugmann: Incremental Learning from Positive Data. J. Comput. Syst. Sci. 53(1): 88-103 (1996) | |
34 | Steffen Lange, Thomas Zeugmann: Set-Driven and Rearrangement-Independent Learning of Recursive Languages. Mathematical Systems Theory 29(6): 599-634 (1996) | |
33 | EE | Steffen Lange, Thomas Zeugmann, Shyam Kapur: Monotonic and Dual Monotonic Language Learning. Theor. Comput. Sci. 155(2): 365-410 (1996) |
1995 | ||
32 | Klaus P. Jantke, Takeshi Shinohara, Thomas Zeugmann: Algorithmic Learning Theory, 6th International Conference, ALT '95, Fukuoka, Japan, October 18-20, 1995, Proceedings Springer 1995 | |
31 | Klaus P. Jantke, Takeshi Shinohara, Thomas Zeugmann: Editor's Introduction. ALT 1995: ix-xv | |
30 | Steffen Lange, Thomas Zeugmann: Trading monotonicity demands versus mind changes. EuroCOLT 1995: 125-139 | |
29 | Rolf Wiehagen, Thomas Zeugmann: Learning and Consistency. GOSLER Final Report 1995: 1-24 | |
28 | Rolf Wiehagen, Carl H. Smith, Thomas Zeugmann: Classifying Recursive Predicates and Languages. GOSLER Final Report 1995: 174-189 | |
27 | Thomas Zeugmann, Steffen Lange: A Guided Tour Across the Boundaries of Learning Recursive Languages. GOSLER Final Report 1995: 190-258 | |
26 | William I. Gasarch, Efim B. Kinber, Mark G. Pleszkoch, Carl H. Smith, Thomas Zeugmann: Learning via Queries with Teams and Anomalies. Fundam. Inform. 23(1): 67-89 (1995) | |
25 | Thomas Zeugmann, Steffen Lange, Shyam Kapur: Characterizations of Monotonic and Dual Monotonic Language Learning Inf. Comput. 120(2): 155-173 (1995) | |
1994 | ||
24 | Steffen Lange, Thomas Zeugmann: Set-Driven and Rearrangement-Independent Learning of Recursive Languages. AII/ALT 1994: 453-468 | |
23 | Thomas Zeugmann: Average Case Analysis of Pattern Language Learning Algorithms (Abstract). AII/ALT 1994: 8-9 | |
22 | Rolf Wiehagen, Thomas Zeugmann: Ignoring data may be the only way to learn efficiently. J. Exp. Theor. Artif. Intell. 6: 131-144 (1994) | |
1993 | ||
21 | EE | Steffen Lange, Thomas Zeugmann: Language Learning in Dependence on the Space of Hypotheses. COLT 1993: 127-136 |
20 | Steffen Lange, Thomas Zeugmann: Language Learning with a Bounded Number of Mind Changes. STACS 1993: 682-691 | |
19 | Steffen Lange, Thomas Zeugmann: Learning Recursive Languages with Bounded Mind Changes. Int. J. Found. Comput. Sci. 4(2): 157-178 (1993) | |
1992 | ||
18 | Steffen Lange, Thomas Zeugmann: A Unifying Approach to Monotonic Language Learning on Informant. AII 1992: 244-259 | |
17 | Rolf Wiehagen, Thomas Zeugmann: Too Much Can be Too Much for Learning Efficiently. AII 1992: 72-86 | |
16 | EE | Steffen Lange, Thomas Zeugmann: Types of Monotonic Language Learning and Their Characterization. COLT 1992: 377-390 |
15 | Thomas Zeugmann: Highly Parallel Computations Modulo a Number Having Only Small Prime Factors Inf. Comput. 96(1): 95-114 (1992) | |
1991 | ||
14 | Steffen Lange, Thomas Zeugmann: Monotonic Versus Nonmonotonic Language Learning. Nonmonotonic and Inductive Logic 1991: 254-269 | |
13 | Efim B. Kinber, Thomas Zeugmann: One-Sided Error Probabilistic Inductive Inference and Reliable Frequency Identification Inf. Comput. 92(2): 253-284 (1991) | |
1990 | ||
12 | EE | Efim B. Kinber, William I. Gasarch, Thomas Zeugmann, Mark G. Pleszkoch, Carl H. Smith: Learning Via Queries With Teams and Anomilies. COLT 1990: 327-337 |
11 | Thomas Zeugmann: Computing Large Polynomial Powers Very Fast in Parallel. MFCS 1990: 538-544 | |
10 | Thomas Zeugmann: Inductive Inference of Optimal Programs: A Survey and Open Problems. Nonmonotonic and Inductive Logic 1990: 208-222 | |
1989 | ||
9 | Efim B. Kinber, Thomas Zeugmann: Refined Query Inference (Extended Abstract). AII 1989: 148-160 | |
8 | Efim B. Kinber, Thomas Zeugmann: Monte-Carlo Inference and Its Relations to Reliable Frequency Identification. FCT 1989: 257-266 | |
7 | Thomas Zeugmann: Improved Parallel Computations in the Ring Z/palpha. Elektronische Informationsverarbeitung und Kybernetik 25(10): 543-547 (1989) | |
1988 | ||
6 | Thomas Zeugmann: On the Power of Recursive Optimizers. Theor. Comput. Sci. 62(3): 289-310 (1988) | |
1986 | ||
5 | Thomas Zeugmann: On Barzdin's Conjecture. AII 1986: 220-227 | |
1985 | ||
4 | Thomas Zeugmann: On recursive optimizers. Mathematical Methods of Specification and Synthesis of Software Systems 1985: 240-245 | |
3 | Efim B. Kinber, Thomas Zeugmann: Inductive Inference of Almost Everywhere Correct Programs by Reliably Working Strategies. Elektronische Informationsverarbeitung und Kybernetik 21(3): 91-100 (1985) | |
1983 | ||
2 | Thomas Zeugmann: A-posteriori Characterizations in Inductive Inference of Recursive Functions. Elektronische Informationsverarbeitung und Kybernetik 19(10/11): 559-594 (1983) | |
1 | Thomas Zeugmann: On the Synthesis of Fastest Programs in Inductive Inference. Elektronische Informationsverarbeitung und Kybernetik 19(12): 625-642 (1983) |