| 2008 | 
|---|
| 89 | EE | Peter Knees,
Tim Pohle,
Gerhard Widmer:
Sound/tracks: real-time synaesthetic sonification of train journeys.
ACM Multimedia 2008: 1117-1118 | 
| 88 | EE | Tim Pohle,
Peter Knees,
Gerhard Widmer:
Sound/tracks: real-time synaesthetic sonification and visualisation of passing landscapes.
ACM Multimedia 2008: 599-608 | 
| 87 | EE | Andreas Arzt,
Gerhard Widmer,
Simon Dixon:
Automatic Page Turning for Musicians via Real-Time Machine Listening.
ECAI 2008: 241-245 | 
| 86 | EE | Markus Schedl,
Peter Knees,
Tim Pohle,
Gerhard Widmer:
Towards an Automatically Generated Music Information System Via Web Content Mining.
ECIR 2008: 585-590 | 
| 85 | EE | Christoph Anthes,
Vassil N. Alexandrov,
Dieter Kranzlmüller,
Jens Volkert,
Gerhard Widmer:
Collaborative and Cooperative Environments.
ICCS (3) 2008: 379-380 | 
| 84 | EE | Craig Saunders,
David R. Hardoon,
John Shawe-Taylor,
Gerhard Widmer:
Using string kernels to identify famous performers from their playing style.
Intell. Data Anal. 12(4): 425-440 (2008) | 
| 2007 | 
|---|
| 83 | EE | Peter Knees,
Gerhard Widmer:
Searching for Music Using Natural Language Queries and Relevance Feedback.
Adaptive Multimedia Retrieval 2007: 109-121 | 
| 82 | EE | Markus Schedl,
Gerhard Widmer:
Automatically Detecting Members and Instrumentation of Music Bands Via Web Content Mining.
Adaptive Multimedia Retrieval 2007: 122-133 | 
| 81 | EE | Søren Tjagvad Madsen,
Gerhard Widmer:
Towards a Computational Model of Melody Identification in Polyphonic Music.
IJCAI 2007: 459-464 | 
| 80 | EE | Dominik Schnitzer,
Tim Pohle,
Peter Knees,
Gerhard Widmer:
One-touch access to music on mobile devices.
MUM 2007: 103-109 | 
| 79 | EE | Peter Knees,
Tim Pohle,
Markus Schedl,
Gerhard Widmer:
A music search engine built upon audio-based and web-based similarity measures.
SIGIR 2007: 447-454 | 
| 78 | EE | Tim Pohle,
Peter Knees,
Markus Schedl,
Elias Pampalk,
Gerhard Widmer:
"Reinventing the Wheel": A Novel Approach to Music Player Interfaces.
IEEE Transactions on Multimedia 9(3): 567-575 (2007) | 
| 2006 | 
|---|
| 77 | EE | Peter Knees,
Markus Schedl,
Tim Pohle,
Gerhard Widmer:
An innovative three-dimensional user interface for exploring music collections enriched.
ACM Multimedia 2006: 17-24 | 
| 76 | EE | Markus Schedl,
Peter Knees,
Tim Pohle,
Gerhard Widmer:
Towards Automatic Retrieval of Album Covers.
ECIR 2006: 531-534 | 
| 75 | EE | Markus Schedl,
Peter Knees,
Gerhard Widmer:
Investigating Web-Based Approaches to Revealing Prototypical Music Artists in Genre Taxonomies.
ICDIM 2006: 519-524 | 
| 74 |  | Arthur Flexer,
Fabien Gouyon,
Simon Dixon,
Gerhard Widmer:
Probabilistic Combination of Features for Music Classification.
ISMIR 2006: 111-114 | 
| 73 |  | Tim Pohle,
Peter Knees,
Markus Schedl,
Gerhard Widmer:
Independent Component Analysis for Music Similarity Computation.
ISMIR 2006: 228-233 | 
| 72 |  | Markus Schedl,
Tim Pohle,
Peter Knees,
Gerhard Widmer:
Assigning and Visualizing Music Genres by Web-based Co-Occurrence Analysis.
ISMIR 2006: 260-265 | 
| 71 |  | Søren Tjagvad Madsen,
Gerhard Widmer:
Separating voices in MIDI.
ISMIR 2006: 57-60 | 
| 70 | EE | Peter Knees,
Tim Pohle,
Markus Schedl,
Gerhard Widmer:
Combining audio-based similarity with web-based data to accelerate automatic music playlist generation.
Multimedia Information Retrieval 2006: 147-154 | 
| 69 | EE | Alexander K. Seewald,
Christian Holzbaur,
Gerhard Widmer:
Evaluation of term utility functions for very short multidocument summaries.
Applied Artificial Intelligence 20(1): 57-77 (2006) | 
| 68 | EE | Søren Tjagvad Madsen,
Gerhard Widmer:
Exploring Pianist Performance Styles with Evolutionary String Matching.
International Journal on Artificial Intelligence Tools 15(4): 495-514 (2006) | 
| 67 | EE | Asmir Tobudic,
Gerhard Widmer:
Relational IBL in classical music.
Machine Learning 64(1-3): 5-24 (2006) | 
| 66 | EE | Gerhard Widmer:
Guest editorial: Machine learning in and for music.
Machine Learning 65(2-3): 343-346 (2006) | 
| 65 | EE | Gerhard Widmer:
Guest Editorial: Machine learning in and for music.
Machine Learning 65(2-3): 347 (2006) | 
| 2005 | 
|---|
| 64 | EE | Markus Schedl,
Peter Knees,
Gerhard Widmer:
Improving Prototypical Artist Detection by Penalizing Exorbitant Popularity.
CMMR 2005: 196-200 | 
| 63 | EE | Elias Pampalk,
Arthur Flexer,
Gerhard Widmer:
Hierarchical Organization and Description of Music Collections at the Artist Level.
ECDL 2005: 37-48 | 
| 62 | EE | Søren Tjagvad Madsen,
Gerhard Widmer:
Evolutionary Search for Musical Parallelism.
EvoWorkshops 2005: 488-497 | 
| 61 |  | Søren Tjagvad Madsen,
Gerhard Widmer:
Exploring Similarities in Music Performances with an Evolutionary Algorithm.
FLAIRS Conference 2005: 80-85 | 
| 60 | EE | Markus Schedl,
Peter Knees,
Gerhard Widmer:
Interactive Poster: Using CoMIRVA for Visualizing Similarities Between Music Artists.
IEEE Visualization 2005: 89 | 
| 59 | EE | Asmir Tobudic,
Gerhard Widmer:
Learning to Play Like the Great Pianists.
IJCAI 2005: 871-876 | 
| 58 | EE | Gerhard Widmer:
Why Computers Need to Learn About Music.
ILP 2005: 414 | 
| 57 | EE | Markus Schedl,
Peter Knees,
Gerhard Widmer:
Discovering and Visualizing Prototypical Artists by Web-Based Co-Occurrence Analysis.
ISMIR 2005: 21-28 | 
| 56 | EE | Arthur Flexer,
Elias Pampalk,
Gerhard Widmer:
Novelty Detection Based on Spectral Similarity of Songs.
ISMIR 2005: 260-263 | 
| 55 | EE | Simon Dixon,
Gerhard Widmer:
MATCH: A Music Alignment Tool Chest.
ISMIR 2005: 492-497 | 
| 54 | EE | Peter Knees,
Markus Schedl,
Gerhard Widmer:
Multiple Lyrics Alignment: Automatic Retrieval of Song Lyrics.
ISMIR 2005: 564-569 | 
| 53 | EE | Elias Pampalk,
Arthur Flexer,
Gerhard Widmer:
Improvements of Audio-Based Music Similarity and Genre Classificaton.
ISMIR 2005: 628-633 | 
| 52 | EE | Elias Pampalk,
Tim Pohle,
Gerhard Widmer:
Dynamic Playlist Generation Based on Skipping Behavior.
ISMIR 2005: 634-637 | 
| 51 | EE | Efstathios Stamatatos,
Gerhard Widmer:
Automatic identification of music performers with learning ensembles.
Artif. Intell. 165(1): 37-56 (2005) | 
| 50 | EE | Gerhard Widmer:
Musikalisch intelligente Computer Anwendungen in der klassischen und populären Musik.
Informatik Spektrum 28(5): 363-368 (2005) | 
| 2004 | 
|---|
| 49 |  | Gerhard Widmer,
Patrick Zanon:
Automatic Recognition of Famous Artists by Machine.
ECAI 2004: 1109-1110 | 
| 48 | EE | Asmir Tobudic,
Gerhard Widmer:
Case-Based Relational Learning of Expressive Phrasing in Classical Music.
ECCBR 2004: 419-433 | 
| 47 | EE | Craig Saunders,
David R. Hardoon,
John Shawe-Taylor,
Gerhard Widmer:
Using String Kernels to Identify Famous Performers from Their Playing Style.
ECML 2004: 384-395 | 
| 46 | EE | Peter Knees,
Elias Pampalk,
Gerhard Widmer:
Artist Classification with Web-Based Data.
ISMIR 2004 | 
| 45 | EE | Simon Dixon,
Fabien Gouyon,
Gerhard Widmer:
Towards Characterisation of Music via Rhythmic Patterns.
ISMIR 2004 | 
| 44 | EE | Elias Pampalk,
Gerhard Widmer,
Alvin T. S. Chan:
A new approach to hierarchical clustering and structuring of data with Self-Organizing Maps.
Intell. Data Anal. 8(2): 131-149 (2004) | 
| 2003 | 
|---|
| 43 | EE | Asmir Tobudic,
Gerhard Widmer:
Playing Mozart Phrase by Phrase.
ICCBR 2003: 552-566 | 
| 42 | EE | Asmir Tobudic,
Gerhard Widmer:
Relational IBL in Music with a New Structural Similarity Measure.
ILP 2003: 365-382 | 
| 41 | EE | Simon Dixon,
Elias Pampalk,
Gerhard Widmer:
Classification of dance music by periodicity patterns.
ISMIR 2003 | 
| 40 | EE | Elias Pampalk,
Simon Dixon,
Gerhard Widmer:
Exploring music collections by browsing different views.
ISMIR 2003 | 
| 39 | EE | Elias Pampalk,
Werner Goebl,
Gerhard Widmer:
Visualizing changes in the structure of data for exploratory feature selection.
KDD 2003: 157-166 | 
| 38 |  | Gerhard Widmer,
Simon Dixon,
Werner Goebl,
Elias Pampalk,
Asmir Tobudic:
In Search of the Horowitz Factor.
AI Magazine 24(3): 111-130 (2003) | 
| 37 | EE | Gerhard Widmer:
Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries.
Artif. Intell. 146(2): 129-148 (2003) | 
| 2002 | 
|---|
| 36 | EE | Gerhard Widmer:
In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project.
ALT 2002: 41 | 
| 35 | EE | Gerhard Widmer:
In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project.
Discovery Science 2002: 13-21 | 
| 34 |  | Efstathios Stamatatos,
Gerhard Widmer:
Music Performer Recognition Using an Ensemble of Simple Classifiers.
ECAI 2002: 335-339 | 
| 33 | EE | Marcus-Christopher Ludl,
Gerhard Widmer:
Towards a Simple Clustering Criterion Based on Minimum Length Encoding.
ECML 2002: 258-269 | 
| 32 | EE | Simon Dixon,
Werner Goebl,
Gerhard Widmer:
Real Time Tracking and Visualisation of Musical Expression.
ICMAI 2002: 58-68 | 
| 31 |  | Björn Bringmann,
Stefan Kramer,
Friedrich Neubarth,
Hannes Pirker,
Gerhard Widmer:
Transformation-Based Regression.
ICML 2002: 59-66 | 
| 2001 | 
|---|
| 30 | EE | Gerhard Widmer:
Discovering Strong Principles of Expressive Music Performance with the PLCG Rule Learning Strategy.
ECML 2001: 552-563 | 
| 29 | EE | Gerhard Widmer:
The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery.
ECML 2001: 603-614 | 
| 28 |  | Alexander K. Seewald,
Johann Petrak,
Gerhard Widmer:
Hybrid Decision Tree Learners with Alternative Leaf Classifiers: An Empirical Study.
FLAIRS Conference 2001: 407-411 | 
| 27 | EE | Gerhard Widmer:
The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery.
PKDD 2001: 495-506 | 
| 26 | EE | Gerhard Widmer:
Using AI and machine learning to study expressive music performance: project survey and first report.
AI Commun. 14(3): 149-162 (2001) | 
| 25 |  | Stefan Kramer,
Gerhard Widmer,
Bernhard Pfahringer,
Michael de Groeve:
Prediction of Ordinal Classes Using Regression Trees.
Fundam. Inform. 47(1-2): 1-13 (2001) | 
| 2000 | 
|---|
| 24 | EE | Marcus-Christopher Ludl,
Gerhard Widmer:
Relative Unsupervised Discretization for Regresseion Problems.
ECML 2000: 246-253 | 
| 23 | EE | Stefan Kramer,
Gerhard Widmer,
Bernhard Pfahringer,
Michael de Groeve:
Prediction of Ordinal Classes Using Regression Trees.
ISMIS 2000: 426-434 | 
| 22 | EE | Marcus-Christopher Ludl,
Gerhard Widmer:
Relative Unsupervised Discretization for Association Rule Mining.
PKDD 2000: 148-158 | 
| 21 |  | Gerhard Widmer:
On the Potential of Machine Learning for Music Research.
Readings in Music and Artificial Intelligence 2000: 69-84 | 
| 20 | EE | Klaus Kovar,
Johannes Fürnkranz,
Johann Petrak,
Bernhard Pfahringer,
Robert Trappl,
Gerhard Widmer:
Searching for Patterns in Political Event Sequences: Experiments with the Keds Database.
Cybernetics and Systems 31(6): 649-668 (2000) | 
| 1998 | 
|---|
| 19 |  | Gerhard Widmer,
Miroslav Kubat:
Guest Editors' Introduction.
Machine Learning 32(2): 83-84 (1998) | 
| 1997 | 
|---|
| 18 |  | Maarten van Someren,
Gerhard Widmer:
Machine Learning: ECML-97, 9th European Conference on Machine Learning, Prague, Czech Republic, April 23-25, 1997, Proceedings
Springer 1997 | 
| 17 |  | Gerhard Widmer:
Tracking Context Changes through Meta-Learning.
Machine Learning 27(3): 259-286 (1997) | 
| 1996 | 
|---|
| 16 |  | Gerhard Widmer:
What Is It That Makes It a Horowitz? Empirical Musicology via Machine Learning.
ECAI 1996: 458-462 | 
| 15 |  | Gerhard Widmer:
Recognition and Exploitation of Contextual CLues via Incremental Meta-Learning.
ICML 1996: 525-533 | 
| 14 |  | Gerhard Widmer,
Miroslav Kubat:
Learning in the Presence of Concept Drift and Hidden Contexts.
Machine Learning 23(1): 69-101 (1996) | 
| 1995 | 
|---|
| 13 |  | Miroslav Kubat,
Gerhard Widmer:
Adapting to Drift in Continuous Domains (Extended Abstract).
ECML 1995: 307-310 | 
| 1994 | 
|---|
| 12 |  | Gerhard Widmer:
The Synergy of Music Theory and Al: Learning Multi-Level Expressive Interpretation.
AAAI 1994: 114-119 | 
| 11 |  | Gerhard Widmer:
Combining Robustness and Flexibility in Learning Drifting Concepts.
ECAI 1994: 468-472 | 
| 10 |  | Johannes Fürnkranz,
Gerhard Widmer:
Incremental Reduced Error Pruning.
ICML 1994: 70-77 | 
| 1993 | 
|---|
| 9 |  | Gerhard Widmer,
Miroslav Kubat:
Effective Learning in Dynamic Environments by Explicit Context Tracking.
ECML 1993: 227-243 | 
| 8 |  | Gerhard Widmer,
Werner Horn,
Bernhard Nagele:
Automatic knowledge base refinement: learning from examples and deep knowledge in rheumatology.
Artificial Intelligence in Medicine 5(3): 225-243 (1993) | 
| 7 |  | Gerhard Widmer:
Combining Knowledge-Based and Instance-Based Learning to Exploit Qualitative Knowledge.
Informatica (Slovenia) 17(4):  (1993) | 
| 1992 | 
|---|
| 6 |  | Gerhard Widmer,
Miroslav Kubat:
Learning Flexible Concepts from Streams of Examples: FLORA 2.
ECAI 1992: 463-467 | 
| 1991 | 
|---|
| 5 |  | Bernhard Nagele,
Gerhard Widmer,
Werner Horn:
Automatische Verfeinerung der Wissensbasis durch maschinelles Lernen in einem medizinischen Expertensystem.
ÖGAI 1991: 68-77 | 
| 4 |  | Gerhard Widmer:
Using Plausible Explanations to Bias Empirical Generalizations in Weak Theory Domains.
EWSL 1991: 33-43 | 
| 1989 | 
|---|
| 3 |  | Gerhard Widmer:
Wissensbasiertes Lernen in der Musik: Die Integration induktiver und deduktiver Lernmethoden.
ÖGAI 1989: 154-163 | 
| 2 |  | Gerhard Widmer:
A Tight Integration of Deductive Learning.
ML 1989: 11-13 | 
| 1985 | 
|---|
| 1 |  | Gerhard Widmer,
Werner Horn:
VIE-PCX - Ein Expert System Shell für den PC.
ÖGAI 1985: 34-41 |