dblp.uni-trier.dewww.uni-trier.de

Gerhard Widmer

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo
Home Page

2008
89EEPeter Knees, Tim Pohle, Gerhard Widmer: Sound/tracks: real-time synaesthetic sonification of train journeys. ACM Multimedia 2008: 1117-1118
88EETim Pohle, Peter Knees, Gerhard Widmer: Sound/tracks: real-time synaesthetic sonification and visualisation of passing landscapes. ACM Multimedia 2008: 599-608
87EEAndreas Arzt, Gerhard Widmer, Simon Dixon: Automatic Page Turning for Musicians via Real-Time Machine Listening. ECAI 2008: 241-245
86EEMarkus Schedl, Peter Knees, Tim Pohle, Gerhard Widmer: Towards an Automatically Generated Music Information System Via Web Content Mining. ECIR 2008: 585-590
85EEChristoph Anthes, Vassil N. Alexandrov, Dieter Kranzlmüller, Jens Volkert, Gerhard Widmer: Collaborative and Cooperative Environments. ICCS (3) 2008: 379-380
84EECraig Saunders, David R. Hardoon, John Shawe-Taylor, Gerhard Widmer: Using string kernels to identify famous performers from their playing style. Intell. Data Anal. 12(4): 425-440 (2008)
2007
83EEPeter Knees, Gerhard Widmer: Searching for Music Using Natural Language Queries and Relevance Feedback. Adaptive Multimedia Retrieval 2007: 109-121
82EEMarkus Schedl, Gerhard Widmer: Automatically Detecting Members and Instrumentation of Music Bands Via Web Content Mining. Adaptive Multimedia Retrieval 2007: 122-133
81EESøren Tjagvad Madsen, Gerhard Widmer: Towards a Computational Model of Melody Identification in Polyphonic Music. IJCAI 2007: 459-464
80EEDominik Schnitzer, Tim Pohle, Peter Knees, Gerhard Widmer: One-touch access to music on mobile devices. MUM 2007: 103-109
79EEPeter Knees, Tim Pohle, Markus Schedl, Gerhard Widmer: A music search engine built upon audio-based and web-based similarity measures. SIGIR 2007: 447-454
78EETim Pohle, Peter Knees, Markus Schedl, Elias Pampalk, Gerhard Widmer: "Reinventing the Wheel": A Novel Approach to Music Player Interfaces. IEEE Transactions on Multimedia 9(3): 567-575 (2007)
2006
77EEPeter Knees, Markus Schedl, Tim Pohle, Gerhard Widmer: An innovative three-dimensional user interface for exploring music collections enriched. ACM Multimedia 2006: 17-24
76EEMarkus Schedl, Peter Knees, Tim Pohle, Gerhard Widmer: Towards Automatic Retrieval of Album Covers. ECIR 2006: 531-534
75EEMarkus Schedl, Peter Knees, Gerhard Widmer: Investigating Web-Based Approaches to Revealing Prototypical Music Artists in Genre Taxonomies. ICDIM 2006: 519-524
74 Arthur Flexer, Fabien Gouyon, Simon Dixon, Gerhard Widmer: Probabilistic Combination of Features for Music Classification. ISMIR 2006: 111-114
73 Tim Pohle, Peter Knees, Markus Schedl, Gerhard Widmer: Independent Component Analysis for Music Similarity Computation. ISMIR 2006: 228-233
72 Markus Schedl, Tim Pohle, Peter Knees, Gerhard Widmer: Assigning and Visualizing Music Genres by Web-based Co-Occurrence Analysis. ISMIR 2006: 260-265
71 Søren Tjagvad Madsen, Gerhard Widmer: Separating voices in MIDI. ISMIR 2006: 57-60
70EEPeter Knees, Tim Pohle, Markus Schedl, Gerhard Widmer: Combining audio-based similarity with web-based data to accelerate automatic music playlist generation. Multimedia Information Retrieval 2006: 147-154
69EEAlexander K. Seewald, Christian Holzbaur, Gerhard Widmer: Evaluation of term utility functions for very short multidocument summaries. Applied Artificial Intelligence 20(1): 57-77 (2006)
68EESøren Tjagvad Madsen, Gerhard Widmer: Exploring Pianist Performance Styles with Evolutionary String Matching. International Journal on Artificial Intelligence Tools 15(4): 495-514 (2006)
67EEAsmir Tobudic, Gerhard Widmer: Relational IBL in classical music. Machine Learning 64(1-3): 5-24 (2006)
66EEGerhard Widmer: Guest editorial: Machine learning in and for music. Machine Learning 65(2-3): 343-346 (2006)
65EEGerhard Widmer: Guest Editorial: Machine learning in and for music. Machine Learning 65(2-3): 347 (2006)
2005
64EEMarkus Schedl, Peter Knees, Gerhard Widmer: Improving Prototypical Artist Detection by Penalizing Exorbitant Popularity. CMMR 2005: 196-200
63EEElias Pampalk, Arthur Flexer, Gerhard Widmer: Hierarchical Organization and Description of Music Collections at the Artist Level. ECDL 2005: 37-48
62EESøren Tjagvad Madsen, Gerhard Widmer: Evolutionary Search for Musical Parallelism. EvoWorkshops 2005: 488-497
61 Søren Tjagvad Madsen, Gerhard Widmer: Exploring Similarities in Music Performances with an Evolutionary Algorithm. FLAIRS Conference 2005: 80-85
60EEMarkus Schedl, Peter Knees, Gerhard Widmer: Interactive Poster: Using CoMIRVA for Visualizing Similarities Between Music Artists. IEEE Visualization 2005: 89
59EEAsmir Tobudic, Gerhard Widmer: Learning to Play Like the Great Pianists. IJCAI 2005: 871-876
58EEGerhard Widmer: Why Computers Need to Learn About Music. ILP 2005: 414
57EEMarkus Schedl, Peter Knees, Gerhard Widmer: Discovering and Visualizing Prototypical Artists by Web-Based Co-Occurrence Analysis. ISMIR 2005: 21-28
56EEArthur Flexer, Elias Pampalk, Gerhard Widmer: Novelty Detection Based on Spectral Similarity of Songs. ISMIR 2005: 260-263
55EESimon Dixon, Gerhard Widmer: MATCH: A Music Alignment Tool Chest. ISMIR 2005: 492-497
54EEPeter Knees, Markus Schedl, Gerhard Widmer: Multiple Lyrics Alignment: Automatic Retrieval of Song Lyrics. ISMIR 2005: 564-569
53EEElias Pampalk, Arthur Flexer, Gerhard Widmer: Improvements of Audio-Based Music Similarity and Genre Classificaton. ISMIR 2005: 628-633
52EEElias Pampalk, Tim Pohle, Gerhard Widmer: Dynamic Playlist Generation Based on Skipping Behavior. ISMIR 2005: 634-637
51EEEfstathios Stamatatos, Gerhard Widmer: Automatic identification of music performers with learning ensembles. Artif. Intell. 165(1): 37-56 (2005)
50EEGerhard Widmer: Musikalisch intelligente Computer Anwendungen in der klassischen und populären Musik. Informatik Spektrum 28(5): 363-368 (2005)
2004
49 Gerhard Widmer, Patrick Zanon: Automatic Recognition of Famous Artists by Machine. ECAI 2004: 1109-1110
48EEAsmir Tobudic, Gerhard Widmer: Case-Based Relational Learning of Expressive Phrasing in Classical Music. ECCBR 2004: 419-433
47EECraig Saunders, David R. Hardoon, John Shawe-Taylor, Gerhard Widmer: Using String Kernels to Identify Famous Performers from Their Playing Style. ECML 2004: 384-395
46EEPeter Knees, Elias Pampalk, Gerhard Widmer: Artist Classification with Web-Based Data. ISMIR 2004
45EESimon Dixon, Fabien Gouyon, Gerhard Widmer: Towards Characterisation of Music via Rhythmic Patterns. ISMIR 2004
44EEElias Pampalk, Gerhard Widmer, Alvin T. S. Chan: A new approach to hierarchical clustering and structuring of data with Self-Organizing Maps. Intell. Data Anal. 8(2): 131-149 (2004)
2003
43EEAsmir Tobudic, Gerhard Widmer: Playing Mozart Phrase by Phrase. ICCBR 2003: 552-566
42EEAsmir Tobudic, Gerhard Widmer: Relational IBL in Music with a New Structural Similarity Measure. ILP 2003: 365-382
41EESimon Dixon, Elias Pampalk, Gerhard Widmer: Classification of dance music by periodicity patterns. ISMIR 2003
40EEElias Pampalk, Simon Dixon, Gerhard Widmer: Exploring music collections by browsing different views. ISMIR 2003
39EEElias Pampalk, Werner Goebl, Gerhard Widmer: Visualizing changes in the structure of data for exploratory feature selection. KDD 2003: 157-166
38 Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk, Asmir Tobudic: In Search of the Horowitz Factor. AI Magazine 24(3): 111-130 (2003)
37EEGerhard Widmer: Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries. Artif. Intell. 146(2): 129-148 (2003)
2002
36EEGerhard Widmer: In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project. ALT 2002: 41
35EEGerhard Widmer: In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project. Discovery Science 2002: 13-21
34 Efstathios Stamatatos, Gerhard Widmer: Music Performer Recognition Using an Ensemble of Simple Classifiers. ECAI 2002: 335-339
33EEMarcus-Christopher Ludl, Gerhard Widmer: Towards a Simple Clustering Criterion Based on Minimum Length Encoding. ECML 2002: 258-269
32EESimon Dixon, Werner Goebl, Gerhard Widmer: Real Time Tracking and Visualisation of Musical Expression. ICMAI 2002: 58-68
31 Björn Bringmann, Stefan Kramer, Friedrich Neubarth, Hannes Pirker, Gerhard Widmer: Transformation-Based Regression. ICML 2002: 59-66
2001
30EEGerhard Widmer: Discovering Strong Principles of Expressive Music Performance with the PLCG Rule Learning Strategy. ECML 2001: 552-563
29EEGerhard Widmer: The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery. ECML 2001: 603-614
28 Alexander K. Seewald, Johann Petrak, Gerhard Widmer: Hybrid Decision Tree Learners with Alternative Leaf Classifiers: An Empirical Study. FLAIRS Conference 2001: 407-411
27EEGerhard Widmer: The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery. PKDD 2001: 495-506
26EEGerhard Widmer: Using AI and machine learning to study expressive music performance: project survey and first report. AI Commun. 14(3): 149-162 (2001)
25 Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, Michael de Groeve: Prediction of Ordinal Classes Using Regression Trees. Fundam. Inform. 47(1-2): 1-13 (2001)
2000
24EEMarcus-Christopher Ludl, Gerhard Widmer: Relative Unsupervised Discretization for Regresseion Problems. ECML 2000: 246-253
23EEStefan Kramer, Gerhard Widmer, Bernhard Pfahringer, Michael de Groeve: Prediction of Ordinal Classes Using Regression Trees. ISMIS 2000: 426-434
22EEMarcus-Christopher Ludl, Gerhard Widmer: Relative Unsupervised Discretization for Association Rule Mining. PKDD 2000: 148-158
21 Gerhard Widmer: On the Potential of Machine Learning for Music Research. Readings in Music and Artificial Intelligence 2000: 69-84
20EEKlaus Kovar, Johannes Fürnkranz, Johann Petrak, Bernhard Pfahringer, Robert Trappl, Gerhard Widmer: Searching for Patterns in Political Event Sequences: Experiments with the Keds Database. Cybernetics and Systems 31(6): 649-668 (2000)
1998
19 Gerhard Widmer, Miroslav Kubat: Guest Editors' Introduction. Machine Learning 32(2): 83-84 (1998)
1997
18 Maarten van Someren, Gerhard Widmer: Machine Learning: ECML-97, 9th European Conference on Machine Learning, Prague, Czech Republic, April 23-25, 1997, Proceedings Springer 1997
17 Gerhard Widmer: Tracking Context Changes through Meta-Learning. Machine Learning 27(3): 259-286 (1997)
1996
16 Gerhard Widmer: What Is It That Makes It a Horowitz? Empirical Musicology via Machine Learning. ECAI 1996: 458-462
15 Gerhard Widmer: Recognition and Exploitation of Contextual CLues via Incremental Meta-Learning. ICML 1996: 525-533
14 Gerhard Widmer, Miroslav Kubat: Learning in the Presence of Concept Drift and Hidden Contexts. Machine Learning 23(1): 69-101 (1996)
1995
13 Miroslav Kubat, Gerhard Widmer: Adapting to Drift in Continuous Domains (Extended Abstract). ECML 1995: 307-310
1994
12 Gerhard Widmer: The Synergy of Music Theory and Al: Learning Multi-Level Expressive Interpretation. AAAI 1994: 114-119
11 Gerhard Widmer: Combining Robustness and Flexibility in Learning Drifting Concepts. ECAI 1994: 468-472
10 Johannes Fürnkranz, Gerhard Widmer: Incremental Reduced Error Pruning. ICML 1994: 70-77
1993
9 Gerhard Widmer, Miroslav Kubat: Effective Learning in Dynamic Environments by Explicit Context Tracking. ECML 1993: 227-243
8 Gerhard Widmer, Werner Horn, Bernhard Nagele: Automatic knowledge base refinement: learning from examples and deep knowledge in rheumatology. Artificial Intelligence in Medicine 5(3): 225-243 (1993)
7 Gerhard Widmer: Combining Knowledge-Based and Instance-Based Learning to Exploit Qualitative Knowledge. Informatica (Slovenia) 17(4): (1993)
1992
6 Gerhard Widmer, Miroslav Kubat: Learning Flexible Concepts from Streams of Examples: FLORA 2. ECAI 1992: 463-467
1991
5 Bernhard Nagele, Gerhard Widmer, Werner Horn: Automatische Verfeinerung der Wissensbasis durch maschinelles Lernen in einem medizinischen Expertensystem. ÖGAI 1991: 68-77
4 Gerhard Widmer: Using Plausible Explanations to Bias Empirical Generalizations in Weak Theory Domains. EWSL 1991: 33-43
1989
3 Gerhard Widmer: Wissensbasiertes Lernen in der Musik: Die Integration induktiver und deduktiver Lernmethoden. ÖGAI 1989: 154-163
2 Gerhard Widmer: A Tight Integration of Deductive Learning. ML 1989: 11-13
1985
1 Gerhard Widmer, Werner Horn: VIE-PCX - Ein Expert System Shell für den PC. ÖGAI 1985: 34-41

Coauthor Index

1Vassil N. Alexandrov [85]
2Christoph Anthes [85]
3Andreas Arzt [87]
4Björn Bringmann [31]
5Alvin T. S. Chan [44]
6Simon Dixon [32] [38] [40] [41] [45] [55] [74] [87]
7Arthur Flexer [53] [56] [63] [74]
8Johannes Fürnkranz [10] [20]
9Werner Goebl [32] [38] [39]
10Fabien Gouyon [45] [74]
11Michael de Groeve [23] [25]
12David R. Hardoon [47] [84]
13Christian Holzbaur [69]
14Werner Horn [1] [5] [8]
15Peter Knees [46] [54] [57] [60] [64] [70] [72] [73] [75] [76] [77] [78] [79] [80] [83] [86] [88] [89]
16Klaus Kovar [20]
17Stefan Kramer [23] [25] [31]
18Dieter Kranzlmüller [85]
19Miroslav Kubat [6] [9] [13] [14] [19]
20Marcus-Christopher Ludl [22] [24] [33]
21Søren Tjagvad Madsen [61] [62] [68] [71] [81]
22Bernhard Nagele [5] [8]
23Friedrich Neubarth [31]
24Elias Pampalk [38] [39] [40] [41] [44] [46] [52] [53] [56] [63] [78]
25Johann Petrak [20] [28]
26Bernhard Pfahringer [20] [23] [25]
27Hannes Pirker [31]
28Tim Pohle [52] [70] [72] [73] [76] [77] [78] [79] [80] [86] [88] [89]
29Craig Saunders [47] [84]
30Markus Schedl [54] [57] [60] [64] [70] [72] [73] [75] [76] [77] [78] [79] [82] [86]
31Dominik Schnitzer [80]
32Alexander K. Seewald [28] [69]
33John Shawe-Taylor [47] [84]
34Maarten van Someren [18]
35Efstathios Stamatatos [34] [51]
36Asmir Tobudic [38] [42] [43] [48] [59] [67]
37Robert Trappl [20]
38Jens Volkert [85]
39Patrick Zanon [49]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)