2007 |
35 | EE | Jürgen Branke,
Clemens Lode,
Jonathan L. Shapiro:
Addressing sampling errors and diversity loss in UMDA.
GECCO 2007: 508-515 |
34 | EE | Hao Wu,
Jonathan L. Shapiro:
Parameter cross-validation and early-stopping in univariate marginal distribution algorithm.
GECCO 2007: 632-633 |
33 | EE | Chong Liu,
Jonathan Shapiro:
Implementing Classical Conditioning with Spiking Neurons.
ICANN (1) 2007: 400-410 |
32 | EE | Stephen B. Furber,
G. Brown,
Joy Bose,
J. Mike Cumpstey,
P. Marshall,
Jonathan L. Shapiro:
Sparse Distributed Memory Using Rank-Order Neural Codes.
IEEE Transactions on Neural Networks 18(3): 648-659 (2007) |
2006 |
31 | EE | Hao Wu,
Jonathan L. Shapiro:
Does overfitting affect performance in estimation of distribution algorithms.
GECCO 2006: 433-434 |
30 | EE | Jonathan Shapiro:
Programming language challenges in systems codes: why systems programmers still use C, and what to do about it.
PLOS 2006: 9 |
29 | EE | Jonathan L. Shapiro:
Diversity Loss in General Estimation of Distribution Algorithms.
PPSN 2006: 92-101 |
28 | EE | Elon S. Correa,
Jonathan L. Shapiro:
Model Complexity vs. Performance in the Bayesian Optimization Algorithm.
PPSN 2006: 998-1007 |
27 | EE | Joy Bose,
Stephen B. Furber,
Jonathan L. Shapiro:
An associative memory for the on-line recognition and prediction of temporal sequences
CoRR abs/cs/0611020: (2006) |
2005 |
26 | EE | Joy Bose,
Stephen B. Furber,
Jonathan L. Shapiro:
A Spiking Neural Sparse Distributed Memory Implementation for Learning and Predicting Temporal Sequences.
ICANN (1) 2005: 115-120 |
25 | | Hao Wu,
Jonathan L. Shapiro:
Choosing Search Algorithms in Bayesian Optimization Algorithm.
IEC (Prague) 2005: 51-55 |
24 | EE | Joy Bose,
Stephen B. Furber,
Jonathan L. Shapiro:
A System for Transmitting a Coherent Burst of Activity Through a Network of Spiking Neurons.
WIRN/NAIS 2005: 44-48 |
23 | EE | Jonathan L. Shapiro:
Drift and Scaling in Estimation of Distribution Algorithms.
Evolutionary Computation 13(1): 99-123 (2005) |
22 | EE | Stephen Marsland,
Ulrich Nehmzow,
Jonathan Shapiro:
On-line novelty detection for autonomous mobile robots.
Robotics and Autonomous Systems 51(2-3): 191-206 (2005) |
2003 |
21 | EE | Jason Fleischer,
Stephen Marsland,
Jonathan Shapiro:
Sensory Anticipation for Autonomous Selection of Robot Landmarks.
Anticipatory Behavior in Adaptive Learning Systems 2003: 201-221 |
2002 |
20 | EE | Jonathan L. Shapiro:
Scaling of Probability-Based Optimization Algorithms.
NIPS 2002: 383-390 |
19 | | Tom Duckett,
Stephen Marsland,
Jonathan Shapiro:
Fast, On-Line Learning of Globally Consistent Maps.
Auton. Robots 12(3): 287-300 (2002) |
18 | EE | Stephen Marsland,
Jonathan Shapiro,
Ulrich Nehmzow:
A self-organising network that grows when required.
Neural Networks 15(8-9): 1041-1058 (2002) |
2001 |
17 | EE | Andrew Johnson,
Jonathan L. Shapiro:
The Importance of Selection Mechanisms in Distribution Estimation Algorithms.
Artificial Evolution 2001: 91-103 |
16 | EE | Jonathan L. Shapiro:
Genetic Algorithms in Machine Learning.
Machine Learning and Its Applications 2001: 146-168 |
15 | EE | Jonathan L. Shapiro,
J. Wearden:
Reinforcement Learning and Time Perception -- a Model of Animal Experiments.
NIPS 2001: 115-122 |
2000 |
14 | | Tom Duckett,
Stephen Marsland,
Jonathan Shapiro:
Learning Globally Consistent Maps by Relaxation.
ICRA 2000: 3841-3846 |
13 | EE | Stephen Marsland,
Ulrich Nehmzow,
Jonathan Shapiro:
Novelty Detection for Robot Neotaxis
CoRR cs.RO/0006005: (2000) |
12 | EE | Stephen Marsland,
Ulrich Nehmzow,
Jonathan Shapiro:
A Real-Time Novelty Detector for a Mobile Robot
CoRR cs.RO/0006006: (2000) |
11 | EE | Stephen Marsland,
Ulrich Nehmzow,
Jonathan Shapiro:
Novelty Detection on a Mobile Robot Using Habituation
CoRR cs.RO/0006007: (2000) |
1998 |
10 | EE | Jonathan L. Shapiro:
Does Data-Model Co-evolution Improve Generalization Performance of Evolving Learners?
PPSN 1998: 540-549 |
1997 |
9 | | David Corne,
Jonathan L. Shapiro:
Evolutionary Computing, AISB International Workshop, Manchester, UK, April 7-8, 1997, Selected Papers
Springer 1997 |
8 | | Sybil Hirsch,
Jonathan L. Shapiro,
Peter I. Frank:
Use of an Artificial Neural Network in Estimating Prevalence and Assessing Underdiagnisis of Asthma.
Neural Computing and Applications 5(2): 124-128 (1997) |
1996 |
7 | | Jonathan Shapiro,
Adam Prügel-Bennett:
Genetic Algorithm Dynamics in a Two-well Potential.
FOGA 1996: 101-116 |
6 | | Magnus Rattray,
Jonathan Shapiro:
Noisy Fitness Evaluation in Genetic Algorithms and the Dynamics of Learning.
FOGA 1996: 117-139 |
1995 |
5 | | Jonathan L. Shapiro,
Adam Prügel-Bennett:
Maximum Entropy Analysis of Genetic Algorithm Operators.
Evolutionary Computing, AISB Workshop 1995: 14-24 |
1994 |
4 | | Jonathan Shapiro,
Adam Prügel-Bennett,
Magnus Rattray:
A Statistical Mechanical Formulation of the Dynamics of Genetic Algorithms.
Evolutionary Computing, AISB Workshop 1994: 17-27 |
1993 |
3 | EE | Jonathan L. Shapiro,
Adam Prügel-Bennett:
Non-Linear Statistical Analysis and Self-Organizing Hebbian Networks.
NIPS 1993: 407-414 |
1990 |
2 | EE | Jonathan Shapiro,
Peter Mowforth:
Data Fusion in 3D Through Surface Tracking.
IEA/AIE (Vol. 1) 1990: 163-168 |
1 | EE | Jonathan Shapiro,
Jin Zhengping:
An Interactive Colour Line Recognition System for Seismic Section Digitisation.
MVA 1990: 223-226 |