2008 |
50 | EE | Kosuke Hashimoto,
Ichigaku Takigawa,
Motoki Shiga,
Minoru Kanehisa,
Hiroshi Mamitsuka:
Mining significant tree patterns in carbohydrate sugar chains.
ECCB 2008: 167-173 |
49 | EE | Ichigaku Takigawa,
Hiroshi Mamitsuka:
Probabilistic path ranking based on adjacent pairwise coexpression for metabolic transcripts analysis.
Bioinformatics 24(2): 250-257 (2008) |
48 | EE | Kosuke Hashimoto,
Kiyoko F. Aoki-Kinoshita,
Nobuhisa Ueda,
Minoru Kanehisa,
Hiroshi Mamitsuka:
A new efficient probabilistic model for mining labeled ordered trees applied to glycobiology.
TKDD 2(1): (2008) |
2007 |
47 | EE | Shanfeng Zhu,
Ichigaku Takigawa,
Shuqin Zhang,
Hiroshi Mamitsuka:
A Probabilistic Model for Clustering Text Documents with Multiple Fields.
ECIR 2007: 331-342 |
46 | EE | Motoki Shiga,
Ichigaku Takigawa,
Hiroshi Mamitsuka:
Annotating gene function by combining expression data with a modular gene network.
ISMB/ECCB (Supplement of Bioinformatics) 2007: 468-478 |
45 | EE | Motoki Shiga,
Ichigaku Takigawa,
Hiroshi Mamitsuka:
A spectral clustering approach to optimally combining numericalvectors with a modular network.
KDD 2007: 647-656 |
44 | EE | Raymond Wan,
Vo Ngoc Anh,
Hiroshi Mamitsuka:
Passage Retrieval with Vector Space and Query-Level Aspect Models.
TREC 2007 |
43 | EE | Takashi Yoneya,
Hiroshi Mamitsuka:
A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors.
Bioinformatics 23(7): 842-849 (2007) |
42 | EE | Hiroshi Mamitsuka,
Naoki Abe:
Active ensemble learning: Application to data mining and bioinformatics.
Systems and Computers in Japan 38(11): 100-108 (2007) |
2006 |
41 | EE | Kiyoko F. Aoki-Kinoshita,
Nobuhisa Ueda,
Hiroshi Mamitsuka,
Minoru Kanehisa:
ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains.
ISMB (Supplement of Bioinformatics) 2006: 25-34 |
40 | EE | Kosuke Hashimoto,
Kiyoko F. Aoki-Kinoshita,
Nobuhisa Ueda,
Minoru Kanehisa,
Hiroshi Mamitsuka:
A new efficient probabilistic model for mining labeled ordered trees.
KDD 2006: 177-186 |
39 | EE | Raymond Wan,
Ichigaku Takigawa,
Hiroshi Mamitsuka,
Vo Ngoc Anh:
Combining Vector-Space and Word-Based Aspect Models for Passage Retrieval.
TREC 2006 |
38 | EE | Raymond Wan,
Ichigaku Takigawa,
Hiroshi Mamitsuka:
Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray Data.
VDMB 2006: 40-49 |
37 | EE | Shanfeng Zhu,
Keiko Udaka,
John Sidney,
Alessandro Sette,
Kiyoko F. Aoki-Kinoshita,
Hiroshi Mamitsuka:
Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.
Bioinformatics 22(13): 1648-1655 (2006) |
36 | EE | Hiroshi Mamitsuka:
Query-learning-based iterative feature-subset selection for learning from high-dimensional data sets.
Knowl. Inf. Syst. 9(1): 91-108 (2006) |
35 | EE | Hiroshi Mamitsuka:
Selecting features in microarray classification using ROC curves.
Pattern Recognition 39(12): 2393-2404 (2006) |
2005 |
34 | EE | Shanfeng Zhu,
Yasushi Okuno,
Gozoh Tsujimoto,
Hiroshi Mamitsuka:
A probabilistic model for mining implicit 'chemical compound-gene' relations from literature.
ECCB/JBI 2005: 251 |
33 | EE | Raymond Wan,
Hiroshi Mamitsuka,
Kiyoko F. Aoki:
Cleaning microarray expression data using Markov random fields based on profile similarity.
SAC 2005: 206-207 |
32 | EE | Krzysztof J. Cios,
Hiroshi Mamitsuka,
Tomomasa Nagashima,
Ryszard Tadeusiewicz:
Computational intelligence in solving bioinformatics problems.
Artificial Intelligence in Medicine 35(1-2): 1-8 (2005) |
31 | EE | Hiroshi Mamitsuka:
Finding the biologically optimal alignment of multiple sequences.
Artificial Intelligence in Medicine 35(1-2): 9-18 (2005) |
30 | EE | Kiyoko F. Aoki,
Hiroshi Mamitsuka,
Tatsuya Akutsu,
Minoru Kanehisa:
A score matrix to reveal the hidden links in glycans.
Bioinformatics 21(8): 1457-1463 (2005) |
29 | EE | Nobuhisa Ueda,
Kiyoko F. Aoki-Kinoshita,
Atsuko Yamaguchi,
Tatsuya Akutsu,
Hiroshi Mamitsuka:
A Probabilistic Model for Mining Labeled Ordered Trees: Capturing Patterns in Carbohydrate Sugar Chains.
IEEE Trans. Knowl. Data Eng. 17(8): 1051-1064 (2005) |
28 | EE | Hiroshi Mamitsuka:
Essential Latent Knowledge for Protein-Protein Interactions: Analysis by an Unsupervised Learning Approach.
IEEE/ACM Trans. Comput. Biology Bioinform. 2(2): 119-130 (2005) |
2004 |
27 | EE | Hiroshi Mamitsuka,
Yasushi Okuno:
A Hierarchical Mixture of Markov Models for Finding Biologically Active Metabolic Paths Using Gene Expression and Protein Classes.
CSB 2004: 341-352 |
26 | EE | Kiyoko F. Aoki,
Nobuhisa Ueda,
Atsuko Yamaguchi,
Minoru Kanehisa,
Tatsuya Akutsu,
Hiroshi Mamitsuka:
Application of a new probabilistic model for recognizing complex patterns in glycans.
ISMB/ECCB (Supplement of Bioinformatics) 2004: 6-14 |
25 | EE | Nobuhisa Ueda,
Kiyoko F. Aoki,
Hiroshi Mamitsuka:
A General Probabilistic Framework for Mining Labeled Ordered Trees.
SDM 2004 |
24 | EE | Atsuko Yamaguchi,
Kiyoko F. Aoki,
Hiroshi Mamitsuka:
Finding the maximum common subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning trees.
Inf. Process. Lett. 92(2): 57-63 (2004) |
23 | | Kiyoko F. Aoki,
Atsuko Yamaguchi,
Nobuhisa Ueda,
Tatsuya Akutsu,
Hiroshi Mamitsuka,
Susumu Goto,
Minoru Kanehisa:
KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains.
Nucleic Acids Research 32(Web-Server-Issue): 267-272 (2004) |
22 | EE | Kiyoko F. Aoki,
Nobuhisa Ueda,
Atsuko Yamaguchi,
Tatsuya Akutsu,
Minoru Kanehisa,
Hiroshi Mamitsuka:
Managing and Analyzing Carbohydrate Data.
SIGMOD Record 33(2): 33-38 (2004) |
2003 |
21 | EE | Hiroshi Mamitsuka:
Empirical Evaluation of Ensemble Feature Subset Selection Methods for Learning from a High-Dimensional Database in Drug Desig.
BIBE 2003: 253-257 |
20 | EE | Hiroshi Mamitsuka:
Detecting Experimental Noises in Protein-Protein Interactions with Iterative Sampling and Model-Based Clustering.
BIBE 2003: 385-392 |
19 | EE | Hiroshi Mamitsuka:
Efficient Mining from Heterogeneous Data Sets for Predicting Protein-Protein Interactions.
DEXA Workshops 2003: 32-36 |
18 | | Hiroshi Mamitsuka:
Hierarchical Latent Knowledge Analysis for Co-occurrence Data.
ICML 2003: 504-511 |
17 | EE | Hiroshi Mamitsuka:
Selective Sampling with a Hierarchical Latent Variable Model.
IDA 2003: 352-363 |
16 | EE | Atsuko Yamaguchi,
Hiroshi Mamitsuka:
Finding the Maximum Common Subgraph of a Partial k-Tree and a Graph with a Polynomially Bounded Number of Spanning Trees.
ISAAC 2003: 58-67 |
15 | EE | Hiroshi Mamitsuka:
Efficient Unsupervised Mining from Noisy Data Sets: Application to Clustering Co-occurrence Data.
SDM 2003 |
14 | EE | Hiroshi Mamitsuka,
Yasushi Okuno,
Atsuko Yamaguchi:
Mining biologically active patterns in metabolic pathways using microarray expression profiles.
SIGKDD Explorations 5(2): 113-121 (2003) |
2002 |
13 | EE | Hiroshi Mamitsuka:
Iteratively Selecting Feature Subsets for Mining from High-Dimensional Databases.
PKDD 2002: 361-372 |
12 | EE | Hiroshi Mamitsuka,
Naoki Abe:
Efficient Data Mining by Active Learning.
Progress in Discovery Science 2002: 258-267 |
2000 |
11 | | Hiroshi Mamitsuka,
Naoki Abe:
Efficient Mining from Large Databases by Query Learning.
ICML 2000: 575-582 |
1998 |
10 | EE | Naoki Abe,
Hiroshi Mamitsuka,
Atsuyoshi Nakamura:
Empirical Comparison of Competing Query Learning Methods.
Discovery Science 1998: 387-388 |
9 | | Naoki Abe,
Hiroshi Mamitsuka:
Query Learning Strategies Using Boosting and Bagging.
ICML 1998: 1-9 |
1997 |
8 | EE | Hiroshi Mamitsuka:
Supervised learning of hidden Markov models for sequence discrimination.
RECOMB 1997: 202-208 |
7 | | Naoki Abe,
Hiroshi Mamitsuka:
Predicting Protein Secondary Structure Using Stochastic Tree Grammars.
Machine Learning 29(2-3): 275-301 (1997) |
1996 |
6 | | Hiroshi Mamitsuka:
A Learning Method of Hidden Markov Models for Sequence Discrimination.
Journal of Computational Biology 3(3): 361-374 (1996) |
1995 |
5 | | Hiroshi Mamitsuka,
Kenji Yamanishi:
alpha-Helix region prediction with stochastic rule learning.
Computer Applications in the Biosciences 11(4): 399-411 (1995) |
4 | | Hiroshi Mamitsuka:
Representing inter-residue dependencies in protein sequences with probabilistic networks.
Computer Applications in the Biosciences 11(4): 413-422 (1995) |
1994 |
3 | | Naoki Abe,
Hiroshi Mamitsuka:
A New Method for Predicting Protein Secondary Structures Based on Stochastic Tree Grammars.
ICML 1994: 3-11 |
2 | | Hiroshi Mamitsuka,
Naoki Abe:
Predicting Location and Structure Of beta-Sheet Regions Using Stochastic Tree Grammars.
ISMB 1994: 276-284 |
1992 |
1 | | Hiroshi Mamitsuka,
Kenji Yamanishi:
Protein Secondary Structure Prediction Based on Stochastic-Rule Learning.
ALT 1992: 240-251 |