dblp.uni-trier.dewww.uni-trier.de

Kenji Yamanishi

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeer - CSB - Google - MSN - Yahoo

2008
38EEShunsuke Hirose, Kenji Yamanishi: Latent Variable Mining with Its Applications to Anomalous Behavior Detection. SDM 2008: 231-242
2007
37EEKenji Yamanishi, Yuko Maruyama: Dynamic Model Selection With its Applications to Novelty Detection. IEEE Transactions on Information Theory 53(6): 2180-2189 (2007)
2006
36EEJun-ichi Takeuchi, Kenji Yamanishi: A Unifying Framework for Detecting Outliers and Change Points from Time Series. IEEE Trans. Knowl. Data Eng. 18(4): 482-492 (2006)
2005
35EEKenji Yamanishi, Yuko Maruyama: Dynamic syslog mining for network failure monitoring. KDD 2005: 499-508
2004
34EESatoshi Morinaga, Kenji Yamanishi: Tracking dynamics of topic trends using a finite mixture model. KDD 2004: 811-816
33EEKenji Yamanishi, Jun-ichi Takeuchi, Graham J. Williams, Peter Milne: On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms. Data Min. Knowl. Discov. 8(3): 275-300 (2004)
2003
32EESatoshi Morinaga, Kenji Yamanishi, Jun-ichi Takeuchi: Distributed cooperative mining for information consortia. KDD 2003: 619-624
31EEHang Li, Kenji Yamanishi: Topic analysis using a finite mixture model. Inf. Process. Manage. 39(4): 521-541 (2003)
2002
30EESatoshi Morinaga, Kenji Yamanishi, Kenji Tateishi, Toshikazu Fukushima: Mining product reputations on the Web. KDD 2002: 341-349
29EEKenji Yamanishi, Jun-ichi Takeuchi: A unifying framework for detecting outliers and change points from non-stationary time series data. KDD 2002: 676-681
28EEKenji Yamanishi, Hang Li: Mining Open Answers in Questionnaire Data. IEEE Intelligent Systems 17(5): 58-63 (2002)
27 Hang Li, Kenji Yamanishi: Text classification using ESC-based stochastic decision lists. Inf. Process. Manage. 38(3): 343-361 (2002)
2001
26EEKenji Yamanishi, Jun-ichi Takeuchi: Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner. KDD 2001: 389-394
25EEHang Li, Kenji Yamanishi: Mining from open answers in questionnaire data. KDD 2001: 443-449
2000
24EEKenji Yamanishi, Jun-ichi Takeuchi, Graham J. Williams, Peter Milne: On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. KDD 2000: 320-324
1999
23EEKenji Yamanishi: Extended Stochastic Complexity and Minimax Relative Loss Analysis. ATL 1999: 26-38
22EEHang Li, Kenji Yamanishi: Text Classification Using ESC-based Stochastic Decision Lists. CIKM 1999: 122-130
21 Kenji Yamanishi: Distributed Cooperative Bayesian Learning Strategies. Inf. Comput. 150(1): 22-56 (1999)
1998
20EEKenji Yamanishi: Minimax Relative Loss Analysis for Sequential Prediction Algorithms Using Parametric Hypotheses. COLT 1998: 32-43
19 Kenji Yamanishi: A Decision-Theoretic Extension of Stochastic Complexity and Its Applications to Learning. IEEE Transactions on Information Theory 44(4): 1424-1439 (1998)
1997
18 Hang Li, Kenji Yamanishi: Document Classification Using a Finite Mixture Model. ACL 1997: 39-47
17EEKenji Yamanishi: Distributed Cooperative Bayesian Learning Strategies. COLT 1997: 250-262
16EEHang Li, Kenji Yamanishi: Document Classification Using a Finite Mixture Model CoRR cmp-lg/9705005: (1997)
15 Kenji Yamanishi: On-Line Maximum Likelihood Prediction with Respect to General Loss Functions. J. Comput. Syst. Sci. 55(1): 105-118 (1997)
1996
14EEKenji Yamanishi: A Randomized Approximation of the MDL for Stochastic Models with Hidden Variables. COLT 1996: 99-109
1995
13EEKenji Yamanishi: Randomized Approximate Aggregating Strategies and Their Applications to Prediction and Discrimination. COLT 1995: 83-90
12 Kenji Yamanishi: On-line maximum likelihood prediction with respect to general loss functions. EuroCOLT 1995: 84-98
11 Hiroshi Mamitsuka, Kenji Yamanishi: alpha-Helix region prediction with stochastic rule learning. Computer Applications in the Biosciences 11(4): 399-411 (1995)
10 Kenji Yamanishi: A Loss Bound Model for On-Line Stochastic Prediction Algorithms Inf. Comput. 119(1): 39-54 (1995)
9 Kenji Yamanishi: Probably Almost Discriminative Learning. Machine Learning 18(1): 23-50 (1995)
1994
8EEKenji Yamanishi: The Minimum L-Complexity Algorithm and its Applications to Learning Non-Parametric Rules. COLT 1994: 173-182
1993
7EEKenji Yamanishi: On Polynomial-Time Probably almost Discriminative Learnability. COLT 1993: 94-100
1992
6 Hiroshi Mamitsuka, Kenji Yamanishi: Protein Secondary Structure Prediction Based on Stochastic-Rule Learning. ALT 1992: 240-251
5EEKenji Yamanishi: Probably Almost Discriminative Learning. COLT 1992: 164-171
4 Kenji Yamanishi: A Learning Criterion for Stochastic Rules. Machine Learning 9: 165-203 (1992)
1991
3EEKenji Yamanishi: A Loss Bound Model for On-Line Stochastic Prediction Strategies. COLT 1991: 290-302
2 Kenji Yamanishi, Akihiko Konagaya: Learning Stochastic Motifs from Genetic Sequences. ML 1991: 467-471
1990
1EEKenji Yamanishi: A Learning Criterion for Stochastic Rules. COLT 1990: 67-81

Coauthor Index

1Toshikazu Fukushima [30]
2Shunsuke Hirose [38]
3Akihiko Konagaya [2]
4Hang Li [16] [18] [22] [25] [27] [28] [31]
5Hiroshi Mamitsuka [6] [11]
6Yuko Maruyama [35] [37]
7Peter Milne [24] [33]
8Satoshi Morinaga [30] [32] [34]
9Jun-ichi Takeuchi [24] [26] [29] [32] [33] [36]
10Kenji Tateishi [30]
11Graham J. Williams [24] [33]

Colors in the list of coauthors

Copyright © Sun May 17 03:24:02 2009 by Michael Ley (ley@uni-trier.de)